The moonshot 100% clean electricity study

Assessing the tradeoffs among clean portfolios with a PNM case study

TECHNICAL APPENDIX 2

Regionally coordinated planning using SWITCH model

Table of Contents

The SWITCH WECC model

Methodology

Results

Baseline demand scenarios sensitivities

PNM electrically islanded versus connected to the WECC

Long-duration energy storage cost sensitivity for PNM electrically islanded versus connected to the WECC

50% CO₂ emissions reductions WECC-wide and net zero PNM

<u>High electrification with 80% CO₂ emissions</u> reductions WECC-wide and PNM net zero emissions

High electrification with Zero emissions for the WECC and PNM

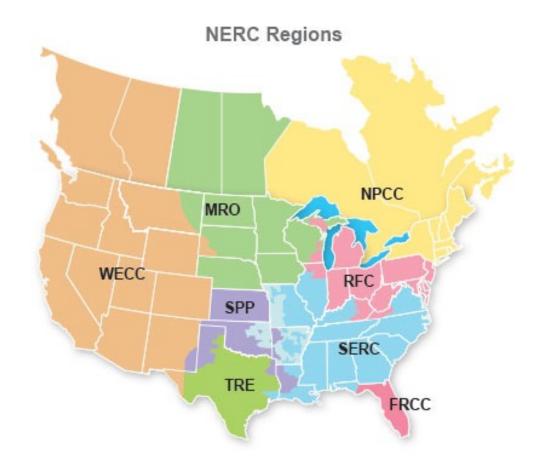
The SWITCH WECC model

SWITCH WECC review

Capacity expansion deterministic linear program

Minimizes total cost of the power system:

- Generation investment and operation
- Transmission investment and operation


Geographic:

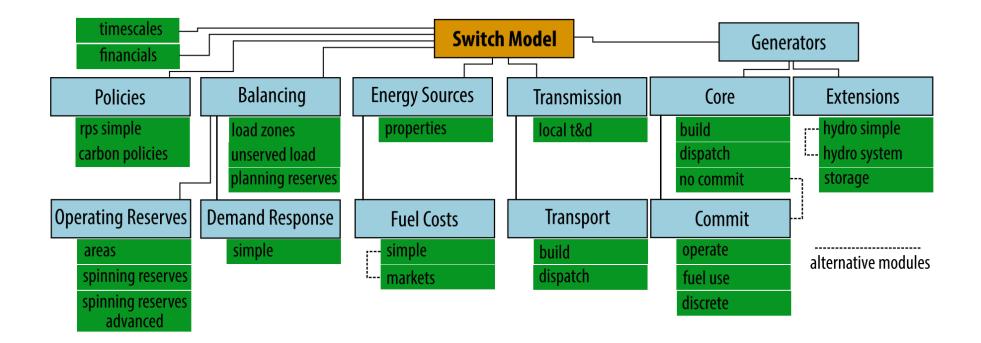
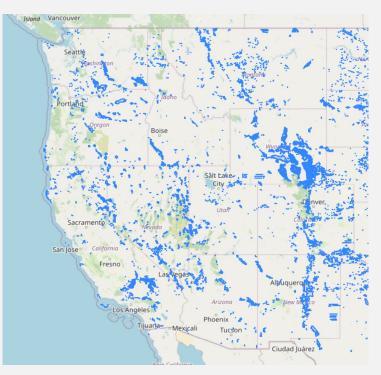
- Western Electricity Coordinating Council
- 50 load areas

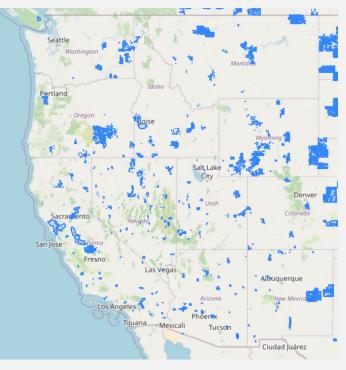
Temporal:

- Investment periods: 2026-2035 ("2030"); 2036-2045 ("2040"); 2046-2055 ("2050");
- Time resolution: sampling every 4 hours, for a subset of days or every day in a year
- Dispatch simulated simultaneously with investment decisions

https://github.com/REAM-lab/switch/

GridL B SWITCH WECC review


Image source: J. Johnson et al., Switch 2.0: A modern platform for planning high-renewable power systems, 2019 https://github.com/REAM-lab/switch/

GridL B SWITCH WECC review

Highlights

- Understand interactions between PNM and the WECC
- Capacity expansion WECC model using 50 zones, 1 zone maps to PNM LSE
- All existing generators (3,000+) disaggregated
- 7,000+ potential new generators
- Hourly data for 50 load zones, solar/wind capacity factors
- Aggregated existing transmission between 50 zones
- Each zone modeled as copper plate
- Year 2035 modeled with 365 days, 6 time blocks/day (to facilitate modeling multiday storage/long duration energy storage (LDES))
- Representing imports and exports as physical electricity flows

Wind candidates

Solar candidates

GridL**贫**B

Methodology

GridL B Customization of SWITCH WECC for PNM study

Code development

WECC

- Improved treatment of RPS modeling for non-zero emissions scenario (outside PNM)
- Time sampling for all 365 days of 2035
- Zonal carbon cap
- New hourly demand forecast from EnergyPATHWAYS mapped into SWITCH zones *

PNM

- Imports/exports constraints on an annual and hourly basis
- Solar to wind ratio of deployment
- Constraint to force total installed capacity

Overall Objectives

- Understand interactions between PNM and the WECC
- Understand role and value of multiday/long-duration energy storage (LDES) in PNM

* See Appendix 1 for a description of the demand forecasts developed by EnergyPATHWAYS

GridL B Scenarios and sensitivities development

- To further understand the interactions of PNM with the rest of the WECC, we conducted a range of scenarios and sensitivities:
- There are three main classes of scenarios:
 - Baseline demand scenarios in which PNM interacts with the WECC, under both conditions of a) WECC-wide net zero emissions reductions, and b) PNM achieves net zero emissions but the rest of the WECC achieves 50% GHG emissions reductions (relative to 2005)
 - High electrification demand scenarios in which PNM interacts with the WECC, under both conditions of a) WECC-wide net zero emissions reductions, and b) PNM achieves net zero emissions but the rest of the WECC achieves 80% GHG emissions reductions (relative to 2005)
 - PNM operates as an electrically islanded zone and does not have any imports or exports with the WECC

- We exercised SWITCH to understand the impact, independently, of a) imports and exports, b) relative build quantities of wind and solar in PNM, c) the cost of long duration storage
- The sensitivities were conducted as follows:
 - The imports/exports sensitivities were conducted by enforcing an annual imports/exports quantity
 - The wind/solar sensitivities were conducted by varying the ratio of wind to solar build in PNM
 - The long duration cost sensitivity was conducted by varying the energy (\$/kWh) cost (note, \$WITCH separately optimizes on storage capacity and energy, and applies different storage capacity and energy costs as inputs)
- Not all sensitivities were conducted for each scenario

GridL B PNM imports/exports constraints (1)

Description of variables:

- Injection is equivalent to generation in the PNM zone with the battery discharge
- Withdrawal is equivalent to the demand within the PNM zone with the battery charging
- Exports occur when injections exceed withdrawals

First, we define the zone injections and withdrawals:

 $\begin{aligned} & \mathsf{Zone_Power_Injections}_{(z,t)} = \mathsf{Generation}_{(z,t)} + \mathsf{Discharge}\ \mathsf{BESS}_{(z,t)} \\ & \mathsf{Zone_Power_Withdrawals}_{(z,t)} = \mathsf{Load}_{(z,t)} + \mathsf{Charge}\ \mathsf{BESS}_{(z,t)} \end{aligned}$

We define the PNM injections and PNM withdrawals as follows:

$$PNM_Injection_{(tp)} = \sum_{z \in PNM} Zone_Power_Injections_{(z,t)}$$
$$PNM_Withdrawal_{(tp)} = \sum_{z \in PNM} Zone_Power_withdrawals_{(z,t)}$$

This describes the methodology implemented in the SWITCH code to conduct the import/export sensitivities.

GridL B PNM imports/exports constraints (2)

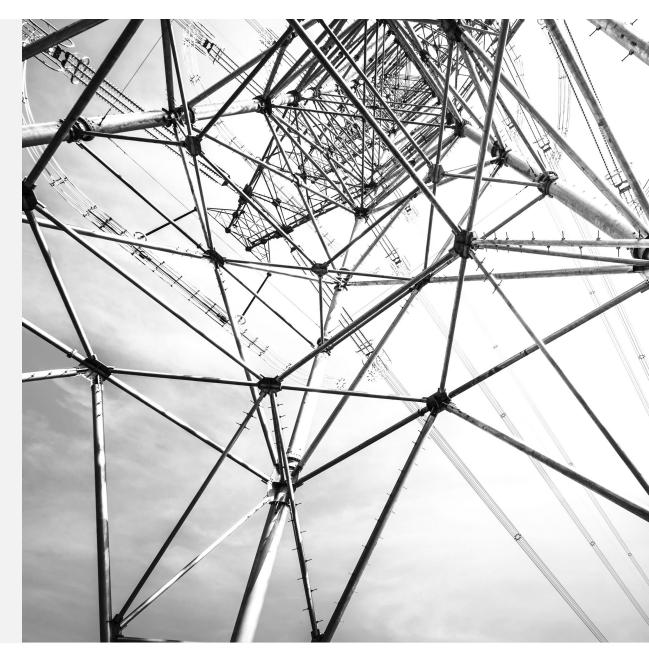
The constraints are:

$$(\text{ratio_lowerbound}) \leq \frac{\sum_{tp} \mathsf{PNM_lnjection}_{(tp)} \Delta tp}{\sum_{tp} \mathsf{PNM_Withdrawal}_{(tp)} \Delta tp} \leq (\text{ratio_upperbound})$$

Where:

- PNM_Injection (*tp*) : Decision variable that represents zone power injections.
- PNM_Withdrawal_(tp) : Decision variable that represents zone power withdrawals.
- ratio_upperbound and ratio_lowerbound : Input parameters.

Baseline demand scenario sensitivities

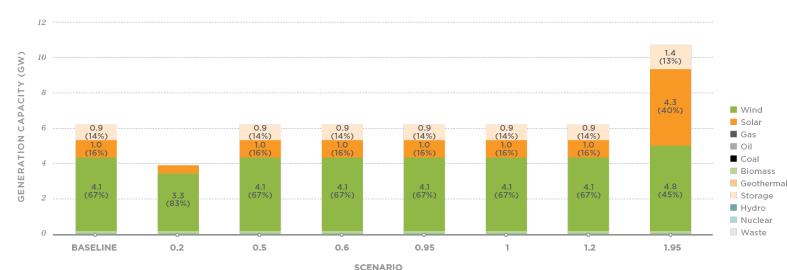

Scenarios and PNM results from baseline

Scenarios and sensitivities

- Zero emissions WECC wide
- 2035 using all 365 days, 6 hours/day
- PNM Sensitivities:
 - imports/exports,
 - wind/solar installed capacity,
 - forced total installed capacity

PNM baseline

- 6.6 GW installed capacity, 5.9 h of storage duration
- Annual net exporter: 10% of its demand
- Heavily relies on imports during the summer (more than 40% in imports)

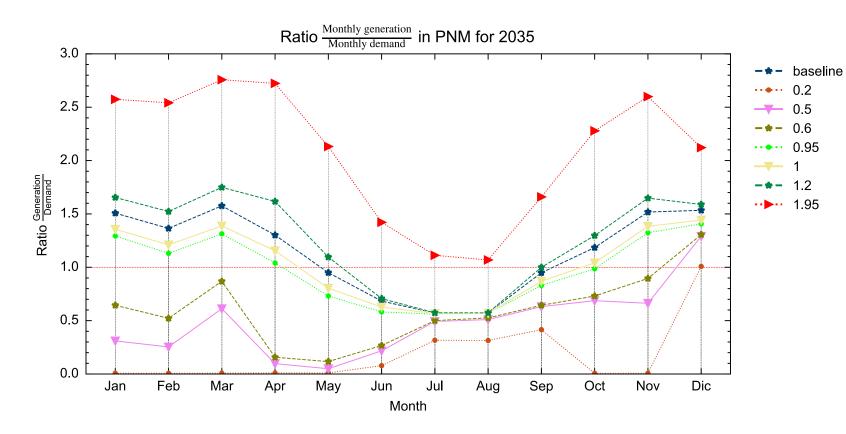


GridL PNM annual imports/exports sensitivity

Scenarios

- Baseline: The baseline scenario is the solution in which SWITCH imposes no constraints on the imports or exports
- Injection/withdrawal ratios: 0.2 (net importer), ..., 1 (break-even),..., 1.95 (net exporter)
- For example, an annual injection/withdrawal ratio of 0.2 implies that 80% of PNM's energy requirements over the year are met through net imports; an annual injection/withdrawal ratio of 1.95 implies that 95% of PNM's generation is exported

Installed capacity



GENERATION CAPACITY (EXISTING + BUILT) IN PNM FOR 2035

- Constant installed capacity despite ranging from 50% net importer to 20% net exporter
- Mostly wind deployed
- Increased generation (active constraint for imports/exports)

GridL PNM annual imports/exports sensitivity

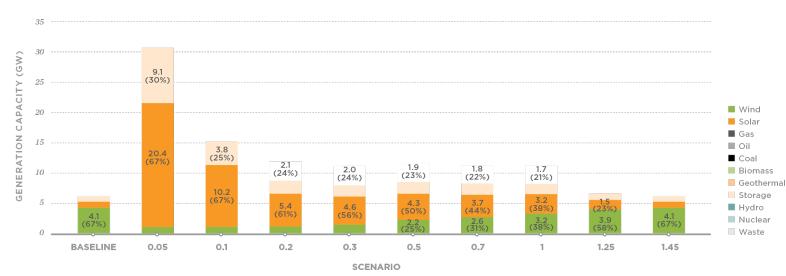
Monthly average injection/withdrawal

- In most scenarios, PNM requires 50% of imports or more during summer months.
- Only when PNM is forced to export 95% of its generation it can become self sufficient on every month.
- This showcases the value of a coordinated market between PNM and its neighbors.

PNM annual imports/exports sensitivity

Lessons learned

- When PNM is forced to produce 95% more than its demand, it can serve its own electricity demand in all months. Otherwise, it depends on imports during the summer
- Forcing PNM to range from 50% net importer to 20% net exporter does not change its installed capacity
- Wind dominates the mix except in the 95% net exporter case
- All scenarios, except 80% net importer, show a storage duration of 5.9h



GridL PNM installed wind/solar ratio sensitivity

Scenarios

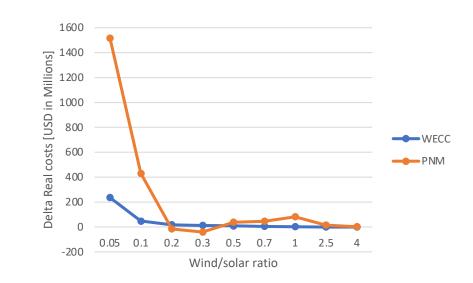
- Baseline (wind/solar = ~4)
- Wind/solar ratios: 0.05 (solar dominant), ..., 4 (wind dominant)
- No imports/exports constraint

Installed capacity

GENERATION CAPACITY (EXISTING + BUILT) IN PNM FOR 2035

- Installed capacity increases 1.3x between baseline (wind dominant) and equal solar/wind deployment, and 2.4x when 90% solar
- Note: to be solar dominant, PNM requires ~16 GW instead of 6.6 GW.
- Storage duration increases with solar share: 5.9 to 6.9 h

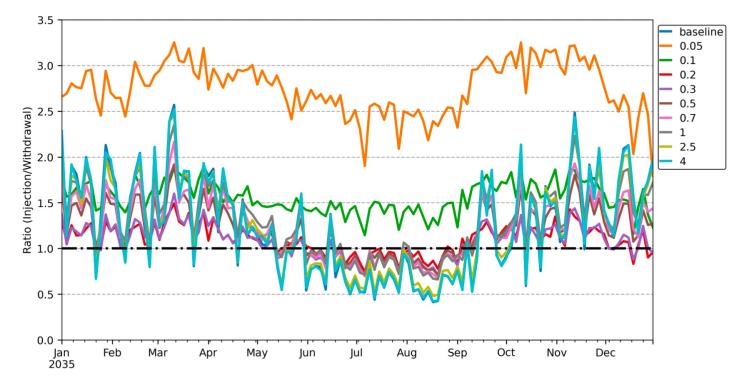
GridL B PNM installed wind/solar ratio sensitivity


Generation

GENERATION CAPACITY (EXISTING + BUILT) IN PNM FOR 2035

 Generation capacity is relatively unaffected, except in extreme solar dominant scenarios.

Costs


- WECC costs monotonically increase as more solar is forced in PNM
- PNM costs marginally decrease as solar goes from 50% to 80%

GridL B PNM installed wind/solar ratio sensitivity

Annually, PNM is a net exporter in all scenarios

- PNM becomes net exporter in all months only when solar power is 90% or more of the total installed capacity
- When solar power is 80% or less of the installed capacity, PNM relies on imports during the summer


Sampled injection/withdrawal

GridL PNM installed wind/solar ratio sensitivity

Lessons learned

- Installed capacity increases 1.3x between baseline (wind dominant) and equal solar/wind deployment, and 2.4x when 90% solar
- PNM costs marginally decrease as solar goes from 50% to 80%
- Annually, PNM is a net exporter in all scenarios
- PNM becomes net exporter in all months only when solar power is 90% or more of the total installed capacity

GENERATION CAPACITY (EXISTING + BUILT) IN PNM FOR 2035

GridL B PNM total installed capacity sensitivity

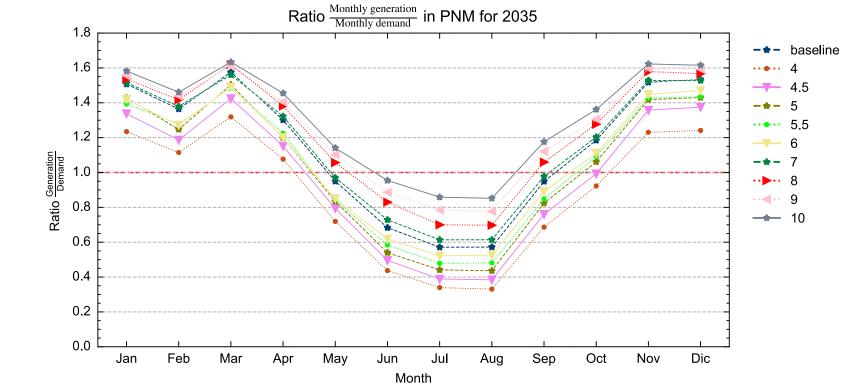
Question

If no wind/solar ratio is enforced, what installed capacity is required for self-sufficiency? How does the capacity mix change?

Scenarios

- Baseline (6.6 GW, no enforcement)
- Installed capacity sensitivity: 4 – 10 GW
- No imports/exports or wind/solar constraints
- Installed capacity

Insights


- Stable optimal wind deployment
- Solar power and storage correlated increase
- Same storage 5.9 h duration across scenarios with storage

2.2 (23%) GENERATION CAPACITY (GW) 1.8 (21%) 1.5 (19%) 1.0 0.9 (16%) Wind (14%) 0.7 (12%) 1.8 (24%) Solar Gas Oil 4 Coal Biomass Geotherma 40 41 Storage Hvdro Nuclear Waste BASELINE 4 4.5 5 5.5 6 7 8 9 10 **SCENARIO**

GENERATION CAPACITY (EXISTING + BUILT) IN PNM FOR 2035

GridL B PNM total installed capacity sensitivity

Monthly average injection/withdrawal

 All scenarios (4 – 10 GW) heavily rely on imports during the summer months

PNM total installed capacity sensitivity

Lessons learned

- Fixed optimal wind deployment as total installed capacity increases
- Solar power and storage correlated increase
- Same storage 5.9 h duration across scenarios with storage
- All scenarios (4 10 GW) heavily rely on imports during the summer months

Overarching finds for PNM's self-sufficiency

PNM net exporter in all months requires:

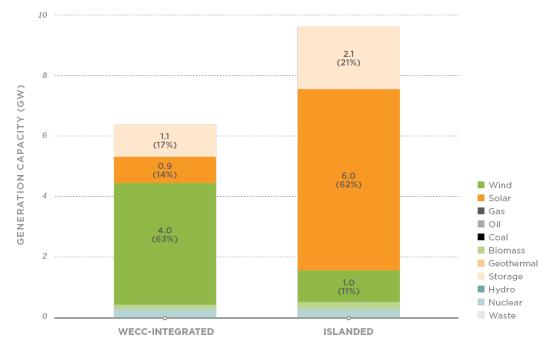
- At least 90% solar deployed (resulting in 15.6 GW) of total capacity vs 6.6 GW) or
- Forcing PNM to generate 95% more of its demand annually

RESULTS

RESULTS

PNM islanded versus connected to the WECC

PNM islanded versus connected to the WECC

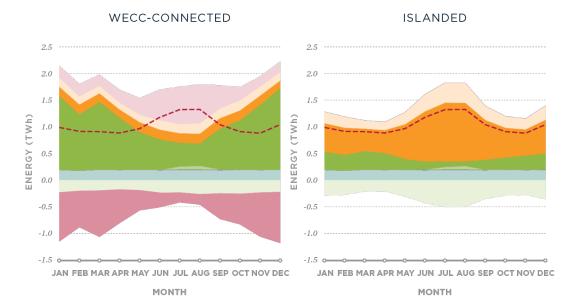

Scenarios

- Zero emissions WECC-wide (and in PNM)
- PNM islanded versus connected

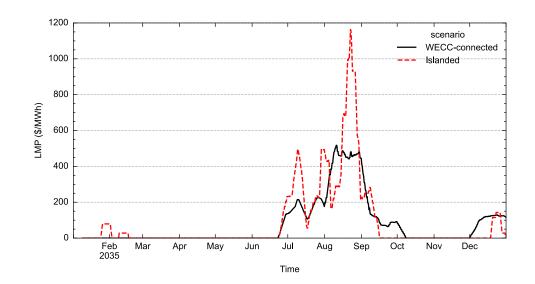
Key findings

- Costs (\$/kWh): 220 (islanded) vs 125 (connected)
- Islanded case is solar dominant (60%)
- Curtailment: 43 14 %
- Storage duration: 6.5 vs 6 hours
- SWITCH islanded case is reliable under weather
- variability (as tested using GridPath)

SCENARIO


PNM islanded versus connected to the WECC

Key findings


- High variability in seasonal dispatch
- LMPs vary widely during the summer
- SWITCH islanded case is reliable when tested in GridPath and robust to interannual weather variability (tested in GridPath

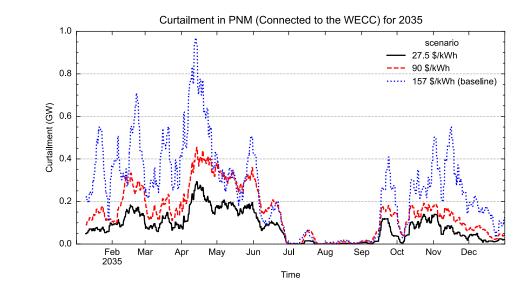
Policy implications

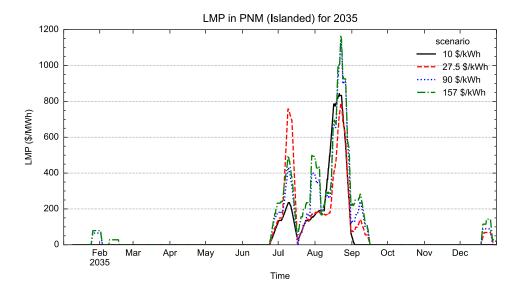
- SWITCH Islanded case does not rely on hydrogen or other uncertain technologies
- Curtailment results from GridPath are 62% and under no imports/exports allowed and 42% when imports/exports are allowed (market for excess renewables)

-- load Wind Solar Gas Oil Coal Biomass Geothermal Storage (D) Storage (C) Exports Imports Hydro Nuclear Waste

RESULTS

Long-duration energy storage cost sensitivity for PNM electrically islanded versus connected to the WECC

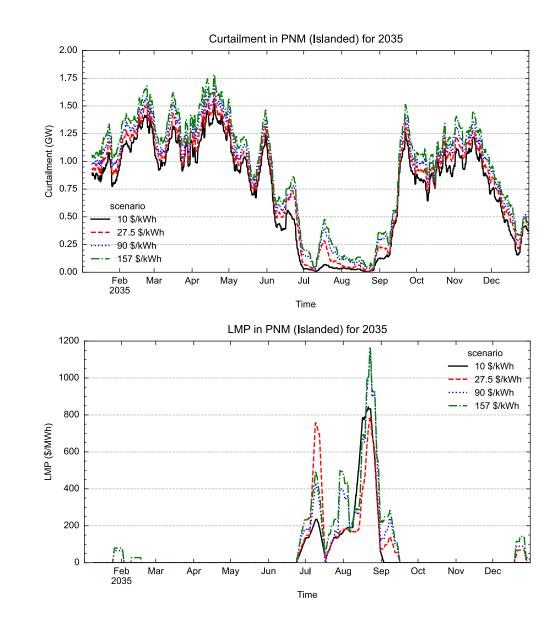

Long-duration Energy Storage (LDES) cost sensitivities, **PNM connected to the WECC**


Scenarios

- Zero emissions WECCwide (and in PNM)
- Sensitivity on storage energy capacity capital costs:
 - 27.5 USD/kWh (DOE storage shot)
 - 90 USD/kWh
 - 157 USD/kWh (NREL ATB)

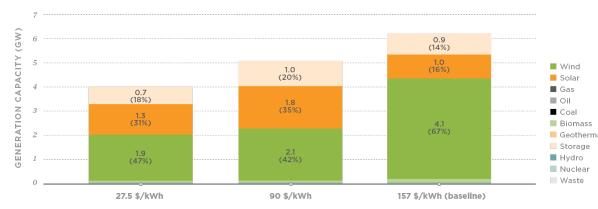
Key findings

- Cost range: \$31/kWh to \$111/kWh
- Installed capacity range: 4.4 – 6.6 GW
- Curtailment: 7 13 %
- Storage duration remains constant at 6h
- Imports/Exports: 0.75 (importer) to 1.1 (exporter)
- LMPs vary widely during the summer

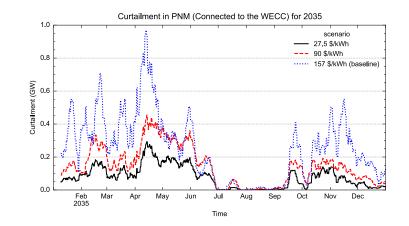

Long-duration Energy Storage (LDES) cost sensitivities, **PNM islanded**

Storage cost sensitivities

- Energy capacity capital costs:
 - 10, 27.5, 90,157 USD/kWh


Key findings

- Cost range (\$/kWh): 75 219
- Installed capacity range: 9.2 10 GW
- Solar power: 5.2, 5.5, 5.8, 6 GW
- Curtailment: 37 43 %
- Storage duration: 17.2, 9, 7, 6.5 hours
- LMPs vary widely during the summer

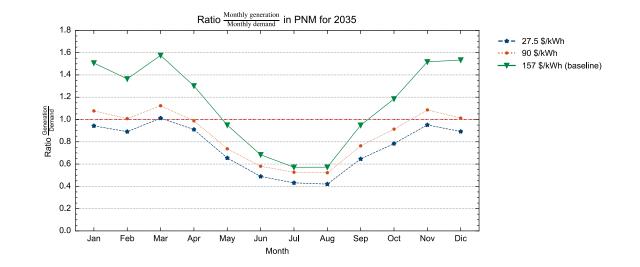

GridL 本B Long-duration Energy Storage (LDES) cost sensitivity, PNM connected

Generation

GENERATION CAPACITY (EXISTING + BUILT) IN PNM FOR 2035

- Curtailment
- Curtailment decreases with cost declines

 As the storage energy capacity cost declines, the installed generation decreases

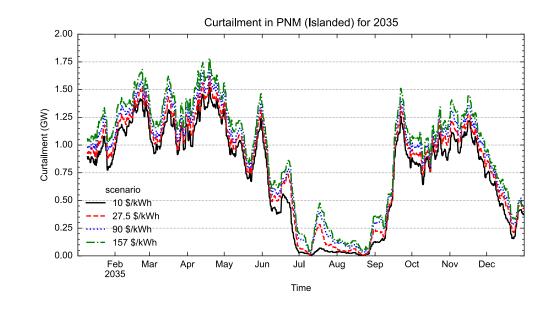

Storage power, energy and duration in PNM

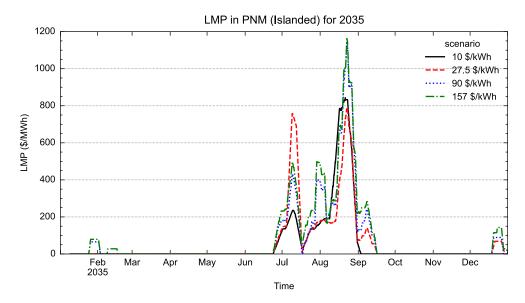
Scenario	27.5 USD/kWh	90 USD/kWh	157 USD/kWh (baseline)
Storage energy capacity (MWh)	4239	6081	5100
Storage power capacity (MW)	721	1034	867
Storage duration (hr)	5.9	5.9	5.9

• Storage duration remains constant at 6h

Long-duration Energy Storage (LDES) cost sensitivity, **PNM connected**

- Lower storage costs corresponds with less exports across the year
- In the lowest cost sensitivity, PNM is a net importer across the entire year including winter months
- These results result that the rest of the West has less need for resources located in PNM as storage becomes more economical


Long-duration Energy Storage (LDES) cost sensitivities, **PNM islanded**


Storage cost sensitivities

- Energy capacity capital costs:
 - 10, 27.5, 90,157 USD/kWh

Key findings

- Cost range (\$/kWh): 75 219
- Installed capacity range: 9.2 10 GW
- Solar power: 5.2, 5.5, 5.8, 6 GW
- Curtailment: 37 43 %
- Storage duration: 17.2, 9, 7, 6.5 hours
- LMPs vary widely during the summer

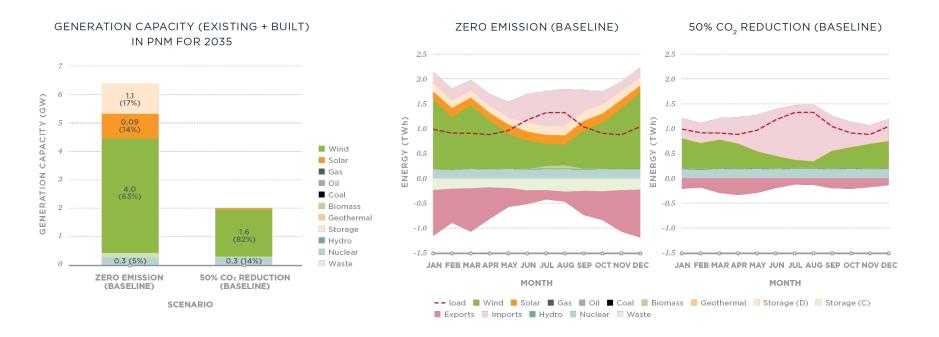
RESULTS

50% CO₂ emissions reductions WECCwide, net zero PNM

50% CO₂ emissions reductions WECC-wide, net zero PNM

Scenarios

- 50% CO₂ emissions reductions emissions WECC wide
- PNM net zero, 90% RPS in CA
- Sensitivity on generation/load ratio in PNM
 - Baseline (.6, net importer)
 - 0.95, 1, 1.3 (net exporter)


Key findings

- Cost range (\$/kWh): 8, 21, 23, 36
- Installed capacity range: 2.4 5.3 GW
- Wind dominant (~70%)
- No exports market (baseline)
- No storage deployed
- LMPs show roughly the same values across cases

0.7 (GW) 0.4 (12%) 0.4 3.9 (79% Ü Wind GENERATION Solar Gas 2.8 (79%) 2.6 (78%) Oil Coal Riomass 1.6 Geotherma Storage Hydro Nuclear 0.3 (9%) 0.3 (14%) 0.3 (8%) 0.3 Waste BASELINE 0.95 1.0 1.30 SCENARIO

GENERATION CAPACITY (EXISTING + BUILT) IN PNM FOR 2035

GridLAB Comparison with the case in which the entire WECC emits zero GHGs

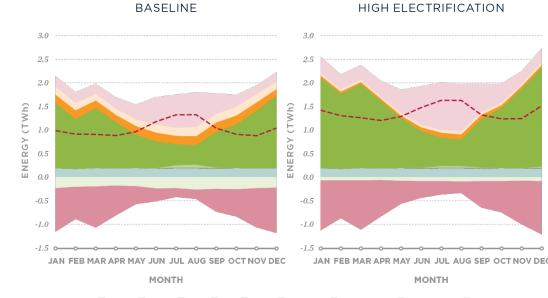
Assumptions

Both scenarios consider a zero emissions policy in PNM. The "Zero emissions (baseline)" scenario considers a WECC-wide zero emissions policy, whereas the "50% CO₂ reduction (baseline)" considers 1.3 Gigatonness CO₂/year WECC-wide. Both have the baseline demand.

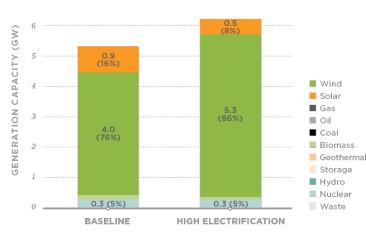
Key findings

- PNM requires up to 225% less installed generation capacity with no solar and no storage in the "50% CO₂ reduction (baseline)"
- In the summer, the "50% CO₂ reduction" scenario visualizes PNM extremely reliant upon imports, especially in summer.
- In the "Zero emissions" scenario, the solar-storage and wind synergy diminish the needs for imports in the summer.

RESULTS


High electrification with zero emissions for the WECC and PNM

The impact of High Electrification on required resources compared with the Baseline demand


Key finding

Significantly more wind capacity (5.3 GW) is required going from the baseline demand scenario to the highelectrification demand scenario. Storage and solar quantities are less affected.

-- load Wind Solar Gas Oil Coal Biomass Geothermal Storage (D) Storage (C) Exports Imports Hydro Nuclear Waste

GENERATION CAPACITY (EXISTING + BUILT) IN PNM FOR 2035

SCENARIO

GridLAB Comparison of key attributes across scenarios (High electrification, net zero WECC wide)

Payment to serve PNM's

Description of scenarios in the table

- High electrification demand
- Zero emissions for the WECC and PNM
- Selected sensitivity cases (informed by the most interesting cases from prior results)

Key Highlights

- PNM would require at most 13.3 hours of storage duration (LDES \$10/MWh scenario). Otherwise, the remaining scenarios show 6.2 7.1 hours of duration (almost double compared to the cases with 80% CO₂ reductions WECC-wide).
- load * (billions USD) Gen/demand Curtailment (millions USD) Scenario as % duration (base) WECC-68 1.13 6.2 100% 13% 1,514 100% connected 0 2,623 6.5 Islanded 103% 1 37% 173% LDES 10 USD/MWh 56% 50 1.11 12% 1,443 95% 13.3 LDES 90 USD/MWh 79% 60 1.15 11% 1,519 100% 7.1 Wind/solar = 0.46 (solar 31% 69% 75 1.24 2,863 189% 6.8 dominant) Gen/demand = 0.95100% 0.95 30% 1.514 100% 6.2 68 Gen/demand = 1100% 68 1 25% 1,514 100% 6.2 99% 1.3 103% 6.6 68 1% 1,553

PNM cost PNM cost

LDES

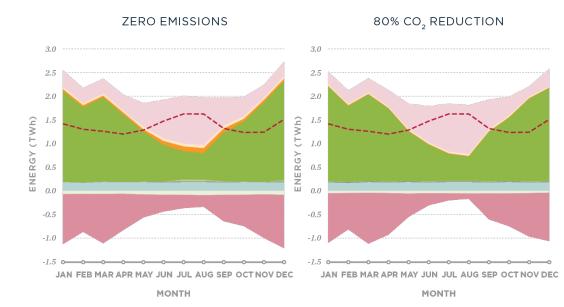
WECC cost

- Cost sensitivities on storage energy capacity (\$10/MWh and \$90/MWh) result in the highest cost savings for PNM (27% and 6% lower total costs with respect to the baseline).
- In terms of payments for electricity served in PNM (considering imports and exports payments), costs sensitivities on LDES as well as a solar dominant PNM (54% solar, 25% wind, 16% storage) results in electricity payment savings (44% - 21% in savings).

^{* &}quot;Payment to serve PNM's load" is an approximation of the net cost to PNM's load, accounting for imports and exports, and acknowledging that SWITCH is fundamentally a regional capacity expansion modeling tool.

RESULTS

High electrification with 80% CO₂ emissions reductions WECC-wide and PNM net zero emissions


Comparing the WECC wide zero GHG case with an 80% WECC wide GHG reductions case

Assumptions

Both scenarios consider a zero emissions policy in PNM. The "Zero emissions" scenario considers a WECC-wide zero emissions policy, whereas the "80% CO_2 reduction" considers 80% GHG emissions reductions across the WECC (equivalent to 5.3 Gigatonnes CO_2 /year). Both use the high electrification demand.

Key findings

- Solar capacity is slightly required (0.5 GW) in the "Zero emissions" scenario as compared to almost zero solar capacity in the "80% CO₂ reduction scenario".
- PNM is wind-dominant (~85 %) in both scenarios.

-- load ■ Wind ■ Solar ■ Gas ■ Oil ■ Coal ■ Biomass ■ Geothermal ■ Storage (D) ■ Storage (C) ■ Exports ■ Imports ■ Hydro ■ Nuclear ■ Waste

GENERATION CAPACITY (EXISTING + BUILT) IN PNM FOR 2035

SCENARIO

GridLAB Comparison of key attributes across scenarios (High electrification, 80% GHG reductions in WECC, PNM is net zero)

Description of scenarios in the table

- High electrification
- 80% emissions reduction WECC-wide compared to 2005, coal retirement, allow gas to stay online
- Build new solar/wind/storage
- Net zero emissions for PNM
- Selected sensitivity cases (informed by the most interesting cases from prior results)

Scenario	Payment to serve PNM's load	WECC cost (billions USD)	Gen/demand	Curtailment	PNM cost (millions USD)	PNM cost as %	LDES duration (hours)
(base) WECC- connected	100%	48	1.11	5%	1,289	100%	3.9
PNM Islanded	147%	0	1	37%	2,623	204%	6.5
LDES 10 USD/MW	64%	42	1.06	4%	1,130	88%	8.8
LDES 90 USD/MWh	88%	46	1.11	5%	1,230	95%	3.9
Wind/solar = 30	99%	48	1.13	5%	1,305	101%	3.9
Wind/solar = 50	100%	48	1.13	5%	1,295	100%	3.9
gen/demand = 0.95	101%	48	0.95	19%	1,247	97%	3.9
gen/demand = 1	100%	48	1	17%	1,289	100%	3.9
gen/demand = 1.3	93%	48	1.3	1%	1,447	112%	3.9

Highlights

- PNM requires at most 6.5 to 8.8 hours of storage duration (islanded and LDES \$10/MWh scenarios). Otherwise, the rest of the scenarios show 3.9 hours of duration.
- Cost sensitivities on storage energy capacity (\$10/MWh and \$90/MWh) result in the highest cost savings for PNM (31% and 15% lower total costs with respect to the base).
- In terms of payments for electricity served in PNM (considering imports and exports payments), costs sensitivities on LDES as well as PNM becoming a net exporter (ratio of generation over withdrawals of 1.3) results in electricity payment savings (35% - 7% in savings respectively).
- Across most cases, the resources built in PNM are wind dominant. The exception is the islanded case in which it is optimal to deploy a solar dominant grid (60% solar, 22% storage, and 10% wind).