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Load forecasting objectives
§ Develop Load shapes and end use profiles for all states in the West 

• 8 weather years and a TMY weather year

§ Use the economy-wide demand side model EnergyPATHWAYS so that the 
forecasted loads incorporate decarbonization impacts, especially in 
terms of electrification 
• Includes a bottom-up representation of technology stocks that consume electricity

§ Forecast load shapes through 2050 based on scenario assumptions 
• (Note although the study was focused on a 2035 target year, EnergyPATHWAYS 

develops forecasts through to 2050.) 

• How do these stocks evolve over time based on assumptions about customer 
sales?

• How do energy service demands change over time?

• How do population and productivity change over time?

Understand the impacts of different demand side futures for New Mexico
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Overview of load forecast modeling approach 
in EnergyPATHWAYS

§ EIA Annual Energy Outlook datasets downscaled from census division to 
state in order to characterize stock, service, and energy demand by 
subsector.
• User defined s-curves for future technology adoption

§ End-use shapes for buildings, industry, and transportation developed 
across multiple weather years
• NREL Restock and Comstock models used for building HVAC

• EVI-Pro Lite used to develop EV charging profiles

• EPRI load shape library used for industrial customers

§ Bottom up-load shapes are benchmarked against FERC form 714 historical 
load data to produce a set of hourly statistical reconciliations.

§ A detailed description of methodology and data sources are include 
included in the supporting material of the 2022 Annual Decarbonization 
Perspective

https://www.evolved.energy/post/adp2022
https://www.evolved.energy/post/adp2022
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Demand side modeling in EnergyPATHWAYS (1 of 2)
§ Scenario-based, bottom-up energy model (not optimization-based)
§ Characterizes rollover of stock over time at 1-year increments
§ Simulates the change in total energy demand and load shape for every end use

Input: Consumer Adoption
EV sales are 100% of consumer 

adoption by 2035 and thereafter

Output: Vehicle Stock
Stocks turn-over as vehicles 

age and retire

Output: Energy Demand
EV drive-train efficiency results in a 

drop in final-energy demand

Illustration of model inputs and outputs for light-duty vehicles



7

Demand side modeling in EnergyPATHWAYS (2 of 2)

Resulting annual End-Use Energy Demand

Hourly Aggregate and End Use Load Shapes

Reference

DDP

205020302020 2040

Vehicles

AC & Furnace

Appliances

Bulb

Stock replacement assumptions before mid-century

This figure shows an illustrative example of how different energy types will change over time 
comparing a “Reference” case and a deep decarbonized case (DDP) due to electrification.  

Example load shapes, not from this study.
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U.S. sectoral granularity based on EIA surveys

IndustryTransportationBuildings
These are all the end uses that we represent in EnergyPATHWAYS that are based on EIA surveys. 

Subsector # Technologies
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commercial cooking 4
commercial lighting 26
commercial other N/A
commercial refrigeration 18
commercial space heating 18
commercial unspecified N/A
commercial ventilation 4
commercial water heating 7
district services N/A
office equipment (non-p.c.) N/A
office equipment (p.c.) N/A
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sid

en
tia

l

residential air conditioning
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residential clothes drying 3
residential clothes washing 4
residential computers and related 6
residential cooking 3
residential dishwashing 2
residential freezing 4
residential furnace fans N/A
residential lighting 39
residential other uses 14
residential refrigeration 6
residential secondary heating N/A
residential space heating 18
residential televisions and related 5
residential water heating 6

Subsector Sub-category # Technologies

Tr
an
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aviation N/A
buses 3 duty cycles 5
domestic shipping N/A
freight rail N/A
heavy duty trucks 2 duty cycles 6
international 
shipping N/A
light duty autos 10
light duty trucks 2 types 11
lubricants N/A
medium duty trucks 6
military use N/A
motorcycles N/A
passenger rail 3 types N/A
recreational boats N/A

Subsector Sub-category

In
du

st
ry

agriculture-crops 4 process types
agriculture-other 4 process types
aluminum industry 6 process types
balance of manufacturing other 9 process types

bulk chemicals
50 process 
types

cement 8 process types
coal mining 2 process types

computer and electronic products
10 process 
types

construction 3 process types
electrical equip., appliances, and 
components 9 process types
fabricated metal products 9 process types
food and kindred products 9 process types
glass and glass products 7 process types
iron and steel 8 process types
machinery 9 process types
metal and other non-metallic mining 2 process types
oil & gas mining 2 process types
paper and allied products 7 process types
petroleum refining 1 process type
plastic and rubber products 9 process types
transportation equipment 9 process types
wood products 9 process types
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Load forecast scenarios developed for the 
Moonshot 100% clean electricity study 

We developed two demand 
profile sets for this study to reflect 
approximate “book ends” of 
decarbonization possibilities. These 
input assumptions are consistent 
with several other decarbonization 
and power sector studies that 
Evolved Energy Research has 
conducted for US studies. 
Although these scenarios were 
developed before the IRA was 
formalized, the High Electrification 
scenario encompasses expected 
IRA impacts in terms of 
electrification impacts. 

Input Assumption Reference High Electrification

Energy service demand Annual Energy Outlook (AEO) 2022

Efficiency Buildings AEO embedded efficiency Sales of high efficiency appliances and 
improvement to building shell (2035 
target)

Transportation Existing CAFÉ standards 1.5% per year aviation efficiency 
improvement

Industry AEO embedded efficiency 1% per year incremental efficiency 
improvements

Electrification Buildings Low electrification 100% electric technology sales by 2035

Transportation AEO adoption 100% ZEV sales by 2035

Industry None Fuel switching for some process heat and 
other fuel use, DRI in iron and steel, 
carbon capture on cement
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Load shape development
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8 weather years of load shapes for all states in the West are used to 
construct the final load data. Instead of a single weather year or 
month-hour data, 70,080 hours of normalized end-use load data are 
multiplied by annual energy in this step.

The outputs of EnergyPATHWAYS, which include an hourly temporal resolution by end-use, for a representative weather year, 
for each state, are converted into hourly load profiles by applying end-use specific shapes derived from load research data. 
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Load Shape Results (NM 2010-2012 weather)

Weather Year

Economic Year

Multiple weather years are required to 
capture extreme heating load events
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State to PNM and BA conversion

§ Based on EIA Form 861

§ Provides load by state, balancing 
authority, and by utility

§ Scalars used to adjust first-year 
starting point to PNM current load 

State Sector BS CA NW RM SW PNM TOTAL
AZ residential 1% 0% 0% 0% 100% 0% 100%
CA residential 0% 100% 0% 0% 0% 0% 100%
CO residential 0% 0% 0% 100% 0% 0% 100%
ID residential 85% 0% 15% 0% 0% 0% 100%
MT residential 0% 0% 94% 0% 0% 0% 94%
NM residential 1% 0% 0% 4% 25% 50% 80%
NV residential 0% 0% 0% 0% 100% 0% 100%
OR residential 1% 0% 99% 0% 0% 0% 100%
UT residential 97% 0% 0% 3% 0% 0% 100%

WA residential 0% 0% 100% 0% 0% 0% 100%
WY residential 39% 0% 23% 38% 0% 0% 100%

This process was repeated for commercial, industrial, transportation sectors

Example disaggregation State à RegionThe demand profiles generated by 
EnergyPATHWAYS were for each state in the West. 
The subsequent modeling steps required that this 
load be broken down to represent PNM’s load, 
and the balancing areas (BAs) across the West. 
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PNM Load Forecast by Electrification Scenario
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Seasonality in the High Electrification Load forecast
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High Electrification

PNM effectively becomes dual peaking with increased electrification,
End-use load forecasts captures new seasonality patterns

With high electrification assumptions, PNM becomes a dual-peaking system, 
with some weather years (2011) seeing a winter peak due to cold snaps

https://www.wunderground.com/blog/weatherhistorian/santa-fe-new-mexico-new-alltime-heat-record.html
https://www.weather.gov/media/epz/Storm_Reports/Cold11/Feb2011ColdWx.pdf
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2035 High Electrification Impacts by Layer (1)

Values represent PNM sales and not include T&D losses. All values rounded to the nearest 10 GWh

Heat pump adoption improves AC efficiency. 

Electrification of space and water heating results in 
large load increases.

Energy efficiency improvements and population 
increases cancel to keep load flat.

Electrification of oil and gas extraction as well as other 
industrial end-uses results in increased load.

Large growth in transportation electrification from a 
very low baseline value

This table shows the comparison of 2035 annual energy for PNM under 
both the Baseline and High Electrification assumptions. 

Sector Subsector Baseline High Elec. Delta (GWh) Delta (%)

Residential Air Conditioning 890 830 -60 -7%

Space Heating 310 590 280 90%

Water Heating 220 550 330 150%

Other 2,750 2,720 -30 -1%

Commercial Air Conditioning 260 240 -20 -8%

Space Heating 60 200 140 233%

Water Heating 10 150 140 1400%

Other 3,930 4,280 350 9%

Industrial 2,280 2,810 530 23%

Transport Autos 10 140 130 1300%

Trucks 200 1,490 1,290 645%

Other 20 800 780 3900%

Total 10,940 14,800 3,860 35%
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2035 High Electrification Impacts by Layer (2)

Sector Subsector Baseline High Elec. Delta (GWh) Delta (%)

Residential Air Conditioning 890 830 -60 -7%

Space Heating 310 590 280 90%

Water Heating 220 550 330 150%

Other 2,750 2,720 -30 -1%

Commercial Air Conditioning 260 240 -20 -8%

Space Heating 60 200 140 233%

Water Heating 10 150 140 1400%

Other 3,930 4,280 350 9%

Industrial 2,280 2,810 530 23%

Transport Autos 10 140 130 1300%

Trucks 200 1,490 1,290 645%

Other 20 800 780 3900%

Total 10,940 14,800 3,860 35%

Values represent PNM sales and not include T&D losses. All values rounded to the nearest 10 GWh

Transportation, specifically medium, 
heavy-duty trucking, and fleet 
vehicles account for the largest 
increase in demand, followed by 
Industrial electrification and 
residential state and water heating. 
On a percentage basis, 
transportation end uses account for 
the largest increase, followed by 
commercial electrification. 
In total, high electrification 
assumptions increase the 2035 load 
growth 35% above baseline 
forecasts, requiring additional 
resources to meet reliability and 
clean energy objectives

PNM Annual Energy Forecast for 2035, Baseline vs. High Electrification, by End Use
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Practitioner Toolkit: 
Renewable 
Generation Profiles
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Methodology of developing system-wide, plant-level 
database of solar & wind power output profiles (1 of 2)

§ Public sources of hourly solar and wind resource profiles for historical weather years served as the original source 
(NREL WindToolkit for wind and NREL NSRDB for solar)

§ The public tools allow to develop specific outputs of solar or wind generators based on the weather conditions (using the NREL 
WindToolkit for wind and NREL System Advisor Tool for solar) 

§ Where there are existing solar and wind locations throughout the West, we developed representative profiles for multiple weather 
years for these specific plants 

§ To develop a 2035 profile, we assumed that the geographic distribution of wind and solar plants will remain consistent with 
historical installations (which is an approximation) for larger plants (see next slide for details)

§ Because we had limited data for wind (i.e., 7 years), and 22 years for solar resources, a Monte Carlo approach was implemented 
to match wind data to additional historical weather years. 

§ There were 2 broad applications for these weather-based profiles: 
• In the capacity expansion modeling (EnCompass) we needed to include representative renewable profiles for PNM- we selected a typical 

weather year (2011) and developed 3 aggregate solar and wind profiles, each. 
• In the resource adequacy analysis, we needed to represent multiple weather year profiles across the West- we developed a representative 

balancing-area based aggregate renewable profile for solar and wind based on the project specific information developed in previous steps. 

§ Hydro resources were modeled with multiple years of monthly energy targets and were considered not to be weather-dependent 
on the same hourly timescales as wind, solar, and load. 

§ Because the analysis did not model thermal resources, weather dependent outages of thermal resources was not considered. 

https://www.nrel.gov/grid/wind-toolkit.html
https://nsrdb.nrel.gov/
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Source: NREL 
NSRDB

Meteorological 
Properties
§ DNI
§ DHI
§ GHI
§ Dew Point
§ Temperature
§ Pressure
§ Relative Humidity
§ Wind Direction
§ Wind Speed
§ Surface Albedo

PV Plant 
Properties
§ System Size (DC)
§ DC:AC Ratio
§ Losses
§ Module Type
§ Array Type
§ Inverter Efficiency
§ Tilt
§ Azimuth
§ Ground Coverage Ratio

Power 
Production
§ 30-min MW production 

by plant
§ Capacity factors
§ System level solar power 

availability

A similar process was developed for wind resources, 
and the same hourly, chronological weather years were considered for load

Solar: 22-year PNM & WECC-specific dataset developed using NREL System Advisor Model (1998 – 2019)
Wind: 8-year PNM & WECC-specific dataset developed using NREL Wind Toolkit (2007-2014), 
focus on overlapping wind years to maintain correlation

Methodology of developing system-wide, plant-level 
database of solar & wind power output profiles (2 of 2)
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Wind and Solar Profiles

Utility-scale

PV

Rooftop

PV

WIND

§ NREL NSRDB + SAM, 22-years of data
§ Single-axis tracking, ILR of 1.4
§ Use existing solar sites >20 MW as proxy for future 

locations, aggregated by state
§ Forecasted additions from IRPs

Multi-year weather dataset, assumptions for new resources

§ NREL NSRDB + SAM, 22-years of data
§ Roof mount, ILR of 1.1
§ 1-profile per zip code aggregated by state, weighted 

using Project SunRoof
§ Forecast based on historical trends

§ NREL WIND ToolKit, 7-years of data
§ 2.5 MW Turbine
§ Use existing wind sites > 75 MW as proxy for future 

locations, aggregated by state
§ Forecasted additions from IRPs

For California and Arizona, we use county-level data in place of zip codes

Wind
Solar

PNM Territory to included multiple candidates 
to capture benefits of geographic diversity * Existing wind and utility-scale solar plants used the same data source, but plant 

configuration was adjusted to align with historical energy production

https://sunroof.withgoogle.com/
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West-wide Behind-the-meter-solar Forecast (1)
The demand profiles developed 
using EnergyPATHWAYS did not 
consider BTM solar. We developed 
the adoption rates of BTM solar as 
follows:
Data Source: EIA-861-M
Estimated Small Scale Solar PV 
Capacity and Generation- Monthly 
Totals for States
https://www.eia.gov/electricity/dat
a/eia861m/
State-level BTM-PV forecast
Assumes recent historical growth 
rates by state, tapering through the 
forecast period 

Project installed capacity of BTM solar for 
each state in the West  (excl. CA)*
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* California not shown due to scale. 
 2025 = 18 GW, 2030 = 25 GW, 2035 = 30 GW 

https://www.eia.gov/electricity/data/eia861m/
https://www.eia.gov/electricity/data/eia861m/
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West-wide Behind-the-meter-solar Forecast (2)
Installed BTM-PV 
By County, 2035

~500 PV Irradiance Locations
Weighted by total installed panel count*

* based on existing panel counts, Google 
Project Sunroof

After developing a statewide 
forecast of rooftop PV capacity, 
the study developed 
chronological, hourly production 
profiles.
The first step was to develop a 
county-level disaggregation 
using satellite image estimates of 
rooftop panel counts (Google 
Project Sunroof)
Each county then aggregated 
sites based on zip codes, with 
multiple sites for each county. 
In total, 500 locations were 
selected for irradiance, and the 
output was weighted based on 
estimated capacity.

https://sunroof.withgoogle.com/
https://sunroof.withgoogle.com/
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PNM Behind-the-meter-solar Forecast (3)
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§ PNM’s BTM solar profile was based on ~28 PV Irradiance Locations
§ One per zip code, weighted by total installed panel count*
§ Used to develop a 22-weather year estimate of hourly, chronological 

VTM PV production
§ Total generation was extrapolated to 2035 levels 

* based on existing 
panel counts, Google 
Project Sunroof

PNM BTM Solar Forecast
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Practitioner Toolkit: 
Capacity Expansion 
Modeling using 
EnCompass
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Foundation of the capacity 
expansion modeling 

The capacity expansion planning and analysis was conducted using EnCompass. This 
included two separate, but interconnected processes. First the model was used to compile 
multiple portfolios of resources, including new builds and retirements, to meet a 100% clean 
electricity target by 2035. In this step, the model compared the relative costs of different 
resources to meet demand in a least cost manner, considering variable operating costs, 
fixed operations and maintenance costs, and capital costs of new resources. 

The resulting portfolios from this analysis was evaluated further in the resource adequacy 
analysis to determine if the portfolios were adequate. In each case, some firm capacity 
(hydrogen CTs) additions were further refined based on the RA analysis. 

The second step of the modeling process was to conduct more detailed, chronological 8760-
hour per year modeling of the resulting portfolios. This step included additional modeling 
constraints to better represent real-time operations. This step served two purposes. It ensured 
that the portfolios were operable, and it was used to develop the total cost and revenue 
requirements for each portfolio. 
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Portfolio Development: Capacity 
Expansion and Production Cost Modeling
§ Portfolio development was done using a capacity 

expansion modeling approach, which includes the 
following two steps within the modeling software tool we 
used in the practitioner approach (EnCompass) 

§ Step One: Capacity Expansion (i.e., develop the portfolio 
based on a forecast of future loads over the planning 
horizon) 
• Optimize system costs given the costs of new and existing 

resources over the planning period of 2023-2035
• Optimize to meet the planning reserve margin
• Simplified unit commitment and dispatch
• Problem size need to be manageable and one way to 

manage the problem size is to simulate two “typical” 
days per month

§ Step Two: Production Cost (i.e., test the portfolio 
performance using hourly modeling in each year in the 
planning horizon) 
• Fix new resources from capacity expansion and dispatch 

along with existing resources
• More granular time and full unit commitment
• 8760 hour per year on a chronological basis for each 

year in the planning period
§ Note: Not all capacity expansion modeling tools include 

the step of production cost modeling, however, one reason 
that it is conducted within the auspices of capacity 
expansion is because it provides a more accurate 
representation of operating costs within a year and can 
thus contribute more accurately towards the estimate of 
portfolio capacity and operating costs. 
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EnCompass: Model Overview
§ PNM’s 2020 IRP model served as the starting point for EnCompass modeling 
§ EnCompass performs capacity expansion and production cost modeling
• In the capacity expansion step, EnCompass optimizes to minimize system costs 

subject to the peak load plus a reserve margin (known as the Planning Reserve 
Margin) 
• Based on the Planning Reserve Margin input, the Effective Load Carrying 

Capacity (ELCC) values for renewables and storage, and Unforced Capacity 
(UCAP) values for other resources (ELCC and UCAP represent different 
approaches towards capacity value) 

§ Time sampling
• One peak and off-peak day per month for capacity expansion
• Full 8,760 hours for production cost modeling

§ Topology
• PNM’s system with assumptions for imports/exports from an external market 
• Modeled flow constraints between 3 zones within PNM’s LSE

§ Time value of money
• EnCompass modeling was conducted using nominal dollars (vs. real) 
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Existing and Planned Resources 

PNM Retirements
§ San Juan, Coal

-500 MW, 2022
§ Four Corners, Coal 

-200 MW, 2025
Partial ownership contract 
abandonment, plant remains online 
in WECC-wide analysis until 2031

§ Palo Verde, Nuclear
-114 MW, 2024 
contract expiration, plant remains 
online in WECC analysis

§ All existing thermal resources retired 
by 2035, requiring replacement in 
the capacity expansion model

PNM Fixed Build
§ Arroyo Solar + Storage*

300 MW PV, 150 MW (600 MWh) BESS
§ San Juan Solar + Storage*

200 MW PV, 100 MW (120 MWh) BESS
§ Rockmont Solar + Storage*

(100 MW PV, 30 MW (120 MWh) BESS
§ Jicarilla Solar + Storage*

50 MW PV, 20 MW (80 MWh) BESS
§ Jicarilla 2 Solar** (50 MW PV)
§ Atrisco Solar+Storage**

300 MW solar, 300 MW (1200 MWh) BESS
§ Sandia Storage** 

100 MW, 200 MWh BESS (standalone0=)

BTM Solar
272 MW in 2022

755 MW in 2035 (+8.2%/yr.)
(details in earlier slides)

The 2020 IRP was updated to reflect a more current set of existing and planned resources based on announced 
projects awarded by PNM and approved by the Commission (note that final capacities and/or retirement dates 
may be different than when the study was developed)

* Replacement resources for 
San Juan Coal Plant 
Retirement

** Replacement Resources for 
Palo Verde abandonment
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Modeling Inputs: Planning Reserve Margin and ELCC
§ 18% Planning Reserve Margin (PRM) is from the 2020 IRP
• PRM that meets a Loss of Load Expectation (“LOLE”) standard 

of 0.2 days per year
• Unforced capacity (“UCAP”) and ELCC accounting for 

thermal and non-thermal resources
§ ELCCs for solar, wind, and battery storage are from PNM’s 2020 

IRP
§ Multiday storage, geothermal, and hydrogen ELCC were 

assumed to be comparable to a UCAP rating of a thermal 
resource and based on engineering judgement.

§ Green highlights on the table represent the ELCC values for 
PNM’s existing and approved resources

§ The ELCCs for solar, wind, and battery storage were modeled 
with a different value depending on the penetration of each 
resource technology (example shown in the table)

§ We note that efforts are being made in the industry to 
implement multi-dimensional ELCC values that address the 
interdependent nature of ELCC values, and the evolution over 
time. However, these efforts are nascent and were not 
incorporated into our modeling. 

Solar ELCC and UCAP values 
0 to 1000 MW 16.8%
1000 to 1200 MW 6.3%
1200 to 1500 MW 5.3%
1500 to 2000 MW 2.2%
Wind
0 to 600 MW 28.8%
600 to 1000 MW 10.7%
1000 to 1500 MW 9.0%
> 1500 MW 2.2%
Battery Storage, 2-Hour
0 to 100 MW 72.0%
Battery Storage, 4-Hour
0 to 300 MW 95.7%
300 to 500 MW 92.5%
500 to 750 MW 84.5%
750 to 1000 MW 61.3%
1000 MW to 1500 MW 24.0%
Battery Storage, 10-Hour
0 to 400 MW 95.6%
400 to 700 MW 85.0%
700 to 1200 MW 62.4%

Multiday Storage 95%
Geothermal 90%
Hydrogen CT 97%
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Modeling Inputs: Natural Gas and Hydrogen Fuel Prices

Natural Gas 
§ Fuel price forecasts were taken from PNM’s 2020 IRP (Appendix G)
§ We assumed that inflationary effects on natural gas prices are 

temporary, and as such, did not make adjustments to the PNM 2020 
IRP assumptions; 

Hydrogen
§ Hydrogen fuel prices were taken from PNM’s 2020 IRP modeling 

assumptions with corroboration to other industry sources
§ Hydrogen prices start at $30/MMBtu in 2030
§ Costs are inclusive of storage and transportation. The study did not 

endogenously model the electrolysis, storage, and delivery of H2, but 
did account for renewable energy needs required for electrolysis. 

§ Instead, the study assumed hydrogen was produced by a third-party 
and delivered to PNM with enough storage to be available when 
needed. 
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Modeling Inputs: Market Assumptions
Market prices were taken from PNM’s 2020 IRP (Appendix G)

Import/Export assumptions
§ Used in both the capacity expansion and production cost 

modeling steps.
§ The EnCompass model assumed available import purchases up 

to 150 MW in any hour
§ EnCompass did not allow sales of surplus energy to prevent the 

model from building additional resources above the PRM to sell 
into the market (curtailment therefore could potentially be 
exported)

§ Included a $30/MWh adder to imports in every hour to limit 
times when imports might happen to take advantage of zero to 
negative energy prices

§ Resource adequacy imports and exports were based on 
availability of resources across the West (see following section)
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Candidate Resource Assumptions

Resources Capital and Fixed O&M (1) First Year Available IRA (2) Transmission Adder ($/kW) (3)

Solar 2022 NREL ATB* 2025 110% PTC $150

Wind 2022 NREL ATB* 2025 110% PTC $450

Battery Storage, 4-Hr 2022 NREL ATB 2025 40% ITC No

Battery Storage, 10-Hr 2022 NREL ATB 2025 40% ITC No

Multiday Storage, 100-Hr CPUC IRP Zero-Carbon 
Technology Assessment(4)

2030 40% ITC No

Geothermal 2022 EIA AEO 2027 40% ITC No

Hydrogen CT 2022 NREL ATB 2030 40% ITC No

1 Real costs were translated into nominal costs using a higher inflation rate to capture inflationary pressures (5% between 2025 and 2027 and then 3% thereafter). An 
additional cost adder was also included for wind and solar to reflect near term supply chain pressures.
2 The IRA assumptions include the Energy Community bonus adder and that projects meet labor and wage requirements.
3 The transmission cost adders were based on projects discussed in PNM’s 2023 IRP Stakeholder Meetings although these values may be different in the final IRP. 
4 https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/2022-irp-
cycle-events-and-materials/cpuc-irp-zero-carbon-technology-assessment.pdf

https://www.pnmforwardtogether.com/assets/uploads/Slides-IRP-Steering-Meeting-6-Transmission-1-091322-FINAL.pdf
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/2022-irp-cycle-events-and-materials/cpuc-irp-zero-carbon-technology-assessment.pdf
https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/energy-division/documents/integrated-resource-plan-and-long-term-procurement-plan-irp-ltpp/2022-irp-cycle-events-and-materials/cpuc-irp-zero-carbon-technology-assessment.pdf
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Incorporation of Inflation Reduction Act and 
Bonus Credits into capital cost assumptions

§ The Inflation Reduction Act has a significant impact 
on the cost of clean energy resources 

§ A key part of our study was to incorporate these 
benefits in the form of tax credits which were 
converted into cost reductions, which were 
modeled as either a production tax credit (PTC) or 
a reduction to the capital cost (ITC)

§ For New Mexico, we included the assumption that 
all projects would qualify for the Energy Community 
bonus adder (10%) based on projections of 
communities within New Mexico that would qualify

§ Wind and solar resources were assumed to have 
110% of PTC, all other resources assumed to have 
40% ITC
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Capital Costs of New Wind, Solar, 
and Geothermal  Resources

§ We modeled wind, solar, and geothermal 
resources in LCOE format (vs. $/kW) in 
EnCompass to be reflective of a PPA price 
with the inclusion of the PTC from the IRA

§ Because the PTC is in a $/MWh format and 
the resources do not have a fuel price this 
simplified the modeling for EnCompass

§ The key observation to take from these 
figures is the significant impact that IRA has 
on costs

Solar, Wind, and Geothermal LCOE

Costs are in nominal dollars
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Capital Costs of New Wind, Solar, 
and Geothermal  Resources
§ For battery storage and hydrogen 

CT resources, capital costs were 
assumed in $/kW, with fuel costs 
(for H2 CTs) modeled 
endogenously

§ Because utilization is based on 
system need, rather than 
predetermined profiles, an upfront 
capital cost method was used. 

Battery and Hydrogen CT Cost

Costs are in nominal dollars
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EnCompass Portfolios
Portfolio Description
Optimized* Optimized based on best available assumptions

Multiday storage could not be selected

Diverse Clean 
Resources*

300 MW Geothermal forced into the model 
Remaining resources optimally selected   

Multiday Storage* 300 MW of 100-hour storage forced into the model
Remaining resources optimally selected  

Islanded** Optimized based on best available assumptions
No imports allowed in any hour

No Hydrogen CTs** Optimized based on best available assumptions
Hydrogen CTs not allowed to be selected

* Each portfolio was optimized for both the Baseline and High Electrification demand 
forecasts 

** The Islanded and No Hydrogen CTs portfolios were developed as a secondary set of 
portfolio sensitivities to further understand how sensitive EnCompass modeling is to 
assumptions on import and hydrogen CT availability  
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EnCompass Portfolio Comparisons 
(Baseline Demand Forecast)

New Build Capacity Total Installed Capacity Annual Generation
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EnCompass New Build Comparisons 
Baseline demand forecast 

Similarities
§ Battery storage deployment through 2029 

to meet PRM requirement, limited VRE
§ Solar PV is the VRE primary energy resource
§ H2 CTs (or other zero-carbon peaking 

resource) is the marginal RA capacity
§ Battery storage saturates and is replaced 

by other firm zero-carbon resource for PRM 
requirement post 2030

Differences
§ Wind provides energy in the optimized 

portfolio, replaced by geothermal
§ Geothermal substitutes 1:1 the firm 

capacity of the H2 CTs
§ LDES substitutes capacity of the H2 CTs, 

allows for more solar integration (less wind)
* Portfolios do not include 32 MW of existing demand response 

programs. Load flexibility will be evaluated in future cases
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New Resource Builds Relative to Historical Additions
To achieve clean energy 
targets, PNM will have to 
accelerate deployment of 
clean energy resources 
relative to historical build 
rates, even without 
electrification, but this pace 
is line with the pace of 
development during some 
periods (i.e., wind during 
the 2015-2019 time period 
and recent solar 
procurements)
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Detailed Portfolio Composition, Baseline demand 

Hydrogen 
CTs

Geother
mal

Multi-day 
Storage Wind Solar

4-8 hour 
Battery 
Storage

Storage 
(MWh)

Storage 
(hrs)

Total Fixed 
Capacity pre 
2025 (MW)

Total Existing 0 11 0 658 385 0 0 0.0
Total Approved 0 0 0 0 1032 650 2600 4.0
Total Fixed 0 11 0 658 1418 650 2600 4.0

New Build 
2025-2035 
(MW)

Optimized 1000 0 0 765 663 778 5156 6.6
Diverse Clean 
Resources 520 300 0 32 657 1057 7948 7.5

Multi-Day Storage 760 0 300 521 930 756 34993 33.1
No H2 - Optimized 0 0 168 189 1459 1741 31588 16.5
EnCompass 
Islanded 1000 0 0 945 670 759 5002 6.6

Total Installed 
Capacity by 
2035 (MW)

Optimized 1000 11 0 1423 2081 1428 7756 5.4
Geothermal 520 311 0 690 2075 1707 10548 6.2
Multi-Day Storage 760 11 300 1179 2348 1406 37593 22.0
No H2 - Optimized 0 11 168 847 2877 2391 34188 13.4
EnCompass 
Islanded 1000 11 0 1603 2088 1409 7602 5.4

This table provides the fixed 
capacity (existing plus 
proposed projects) that was 
included in the EnCompass 
starting point database. 

New build capacity represents 
incremental capacity 
additions selected by the 
model.

Total installed capacity shows 
the total 2035 capacity by 
resource type, including both 
fixed and new build resources
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High Electrification demand forecast 

Hydrogen 
CT Wind Solar Battery 

Storage
Storage 
(MWh)

Optimized 520 -56 575 137 1372
Diverse Clean Resources 0 688 724 684 6840
Multi-Day Storage 560 923 439 85 903

Hydrogen 
CT Wind Solar Battery 

Storage
Storage 
(MWh)

Optimized 52% -7% 87% 18% 27%
Diverse Clean Resources 0% 2164% 110% 65% 86%
Multi-Day Storage 74% 177% 47% 11% 3%

Change to Baseline (MW)

Change to Baseline (%)

§ High electrification mainly implies we need to build clean resources more quickly 
§ Larger increase in wind relative to the increase in solar (already built out 

significantly in the Baseline demand results)
§ Still no economic additions for multi-day storage or geothermal resources
§ Clean firm needs in the Geothermal case are unchanged



42

Sensitivity Analysis: Islanded and No Hydrogen CTs
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High Electrification demand 

§ In both demand cases, the availability of hydrogen CTs has a more direct 
impact than the availability of imports in terms of the resources required to 
meet the planning reserve margin. 

§ In both demand cases, the no hydrogen CT case requires more resources 
compared to the islanded case. The increase in resources is greater under 
high electrification demand assumptions, suggesting that increases in winter 

demand are driving up capacity requirements. 

§ In both demand cases, not having availability of hydrogen CTs increases the 
need for solar and batteries, but reduces the need for wind, likely because 
solar and batteries are more cost efficient in meeting the planning reserve 
margin. 

Sensitivities were conducted assuming no market import capability in EnCompass (islanded), and without Hydrogen CTs as a resource candidate
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EnCompass Portfolios: Net present value revenue 
requirement ($000)

Portfolio Baseline demand
% change relative to 
Optimized portfolio

High Electrification 
demand

% change relative 
to Optimized 

portfolio

% change for each portfolio type 
between Baseline and High Elec 

demand

Optimized $5,432,256 -- $5,952,505 -- 10%

Diverse Clean Resources $5,715,061 5% $6,169,880 4% 8%

Multiday Storage $5,432,961 <1% $5,941,686 <1% 9%

Islanded Sensitivity * $5,579,885 3% $6,108,476 3% 9%

No Hydrogen Sensitivity * $5,567,140 2% $6,347,214 7% 14%

Note: present value revenue requirements do not reflect any market sales revenue since sales were not allowed in the model
* The Islanded and No Hydrogen CTs portfolios are sensitivities on the Optimized portfolios 

Each of the portfolios was within 5% of one another on a PVRR basis, suggesting that there are multiple pathways available to achieve 
decarbonization targets at similar costs. 
Comparing the present value revenue requirements shows that the differences in demand assumptions have a larger impact on PVVR compared 
to the differences in portfolio composition, suggesting a need for improved analysis and forecasting on electrification trends
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Key modeling challenges and observations (1)
Time Sampling Trade Off
§ Selecting a sampling period for capacity expansion 

modeling involves a trade off between simulation periods 
and model run time

§ Selecting a “typical week” or modeling representative days 
with aggregated time blocks (i.e. splitting days into 4 blocks 
of time) may result in longer run times

§ Sometimes trying to model every hour of every day of the 
planning period is not feasible and the model will not be 
able to solve

§ Selecting representative days (i.e., 2 days as one on-peak 
and one off-peak) will result in shorter model runs, but can 
lead to some differences in sampling for renewable profiles 
and load when the representative days are mapped to 
the entire planning year

Uncertainty in Costs
§ It is challenging to predict when the inflationary and supply 

chain pressures of the last few years will dissipate and the 
countereffect of the additional tax credits from the 
passage of the IRA (The IRA was introduced as this study 
was underway)

§ Transmission costs also may be higher as additional wind 
and solar resources are brought online

§ The combination of these three items make it challenging 
to make projections for resource costs into the future
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Key modeling challenges and observations (2)
Imports
§ Capacity expansion models typically include an input for 

“unserved energy”
§ If the unserved energy cost is high enough, then the model will 

seek to build new resources to avoid the unserved energy costs
§ When simulating a system without the ability to import, this means 

that the model will either choose to incur the unserved energy 
cost or build more resources

§ We will typically see more resources added when imports are not 
available to meet the energy needs of the system

Exports
§ Sometimes constraints have to be imposed (not allowing exports 

or limiting new resource builds) to prevent the model from 
overbuilding the system to take advantage of off-system sales to 
lower system costs

Imports/
Exports
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A tale of two capacity 
modeling tools 
§ The Moonshot study utilized two modeling 

suites: the practitioner toolkit, which is the 
focus of this appendix, and a regionally-
coordinated capacity expansion modeling 
tool
• The practitioner toolkit used EnCompass 

for capacity expansion. 
• The regionally-coordinated capacity 

expansion approach used SWITCH 
(SWITCH is described in detail in 
Appendix 2) 

§ These slides are included to help the reader 
understand the key differences between 
the EnCompass and SWITCH modeling 
exercises
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Cross-walking between our two capacity 
expansion modeling results
§ We used two capacity expansion models
• Encompass (coupled with GridPath) is the “practitioner” 

approach (PRM approach) 
• SWITCH is a regional model that optimizes resources for the 

entire West (an idealized “regionally-coordinated” planning 
world) (uses 365 days/4 hr blocks) 

§ Contrasting the results: 
• Encompass prefers “emerging” technologies for reaching 100% 

clean (hydrogen, LDES)
• SWITCH relies on current technologies exclusively (storage 

durations are generally  short) and relies on exchange with the 
rest of the West (net importer in summer, net exporter in winter)  

• Both tools were tested in “islanded mode” and can achieve 
100% clean systems by up-sizing renewables, with short duration 
storage, and with no reliance on exchanges

§ While we don’t have an appropriate economic 
comparison between Encompass and SWITCH 
portfolios, three core strategies to reach 100% 
emerge (these are not mutually exclusive): 
1. Emerging technology approach (e.g., 

hydrogen, long duration storage) 
2. Upsizing existing technologies (e.g., 

islanded case with solar, batteries, biomass) 
3. Regionally coordinated planning (e.g., 

West-wide capacity expansion planning)  
§ While the ”regionally-coordinated” approach is 

idealistic, it speaks to the value of markets
§ Policy makers may want to navigate these 

paths (most relevant to the last “mile” but not 
exclusively) based on risk mitigation 
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Comparison of EnCompass and SWITCH models
Encompass SWITCH

Sampling and chronology 1 on peak and 1 off-peak day per month 365 days and 4 hour blocks

Geography PNM focus with assumptions about imports/exports WECC wide focus (using 50 zones) with PNM 
being its own zone

Capacity needs Meets an annual PRM of 21.2%, based on ELCC 
values for renewables and storage, UCAPs for other 
resources

Does not explicitly model for capacity needs but 
ensures energy is met in all hours 

Transmission Models TX flow constraints between 3 zones within 
PNM's LSE. Outside imports/exports modeled as a 150 
MW limit all hours. 

Copper plate within PNM LSE. Existing transmission 
constraints between all 50 zones in WECC are 
enforced. 

New candidate resources 
modeled 

Solar, wind, batteries (4-hour, 10-hour, and multiday), 
generic H2, and geothermal

Solar, CSP, wind, offshore wind, storage (any 
duration), coal, thermal, nuclear, geothermal, 
and biomass

Wind and solar profiles 1 wind and solar profile based on a weighting of 
several sites for new resources

266 different wind and solar profiles within PNM 
zone

Details of the SWITCH model, which was used to conduct regionally-coordinated capacity expansion modeling, are shown in Technical Appendix 2. 
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Practitioner Toolkit: 
Resource Adequacy 
Modeling using GridPath
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Foundation of the resource adequacy 
modeling 
The resource adequacy analysis was conducted using GridPath. This modeling step used 
the resulting portfolios from the capacity expansion plan to determine whether they 
were reliable (achieved a 1-day-in-10-year loss of load expectation). 

Unlike the capacity expansion modeling, this process included a more detailed 
representation of many weather years and interactions (imports and exports)  with the 
rest of the Western Interconnection. 

The starting point for resource adequacy analysis in this study is the GridPath RA Toolkit. 
The GridPath RA Toolkit (including the software and case study components) are 
described along with details about how the GridPath RA Toolkit is modified for this study.  
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GridPath RA Toolkit

Open-source Toolkit for conducting RA analysis in the Western US using publicly 
available data.

The Toolkit consists of:

§ GridPath, Blue Marble’s open-source power system platform, which includes 
capacity expansion, production cost, and RA modeling: 
https://github.com/blue-marble/gridpath

§ Accompanying code to develop and post-process RA runs in GridPath: 
https://github.com/MomentEI/GridPath_RA_Toolkit

§ Western US Dataset, which includes the load, resource, and transmission data 
for conducting RA assessments of the Western US in 2026: 
www.gridlab.org/GridPathRAToolkit 

Users can customize the datasets to evaluate other systems, years, or portfolios. 
Users can also modify the code to leverage additional capabilities in GridPath or 
to create new functionality.

https://github.com/blue-marble/gridpath
https://github.com/MomentEI/GridPath_RA_Toolkit
http://www.gridlab.org/GridPathRAToolkit
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GridPath 
RA Toolkit

Key features 
for RA analysis

Weather correlations
Two modes available for capturing key weather correlations between 
load and resource availability over very large geographical areas: 
Monte Carlo Simulation and Weather-Synchronized Simulation.

Energy-limited resources
Dynamic dispatch of energy-limited resources, like hydropower, 
energy storage, and hybrid resources to avoid lost load.

Transmission and regional coordination
Dynamic transmission flow modeling provides transparency into 
weather-coherent and transmission-constrained market availability.
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Monte Carlo Simulation

§ Mixes and matches shapes from similar historical days
§ Can generate many possible conditions, leading to high precision
§ Conditions are not fully physically consistent and may not fully preserve all correlations

The GridPath RA Toolkit report described two simulation modes: Monte 
Carlo simulation and Weather- Synchronized simulation. The Moonshot 
study uses the Monte Carlo simulation approach described in this slide. 
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§ For portfolios without multiday storage, GridPath is configured to simulate hourly dispatch with perfect foresight over 
one-week optimization windows
• Optimization minimizes total unserved energy plus the maximum observed unserved energy in each week

§ Across all portfolios, energy storage is constrained so that the beginning state of charge is equal to the ending state 
of charge over each week (i.e., a periodic boundary constraint)
• Ensures that energy is not “created” over the course of the simulation
• Beginning and ending state of charge is selected by the model

§ Weekly optimizations with periodic boundary constraints cannot capture the value of multiday energy storage 
because energy cannot be carried across weeks

§ For multiday storage modeling in this study, GridPath was run with one-year optimization windows (perfect foresight) 
instead of one-week optimization windows
• Applied periodic boundary constraint across the year
• Applied very small penalty on any depletion below the maximum state-of-charge to encourage recharging 

while not compromising reliability (note: penalty was 0.01% of penalty applied to unserved energy)

Optimization windows and storage modeling



55

Data Sources
Transmission topology
§ Consolidated BAA-based zonal topology from the GridPath RA 

Toolkit (based on the WECC 2026 Common Case) into 5 
Western regions, plus a separate region for PNM

§ Constrained flows between SW region and PNM based on 
contractual constraints in PNM’s IRP (see next slide)

Load shapes
§ Hourly load by state for weather years 2007-2014 + 2018 from 

Evolved Energy Research (Baseline and High Electrification 
scenarios)

§ Mapped to 5 Western regions and PNM using EIA Form 861 data

§ These are described in the “Load forecasting” section of this 
appendix

West-wide resource portfolio
§ Non-emitting resource portfolios reflect planned 

additions, based on a review of recent IRPs 
(published between 2020-2022)

§ Emitting resources excluded and replaced with 
capacity- and energy-constrained proxy resources 
(more information on “Import Framework” slides)

Renewable shapes
§ Existing resource shapes were taken from the 

GridPath RA Toolkit Western US Dataset

§ BTM solar and planned and new-build solar and 
wind resources were developed as described in 
the “Renewable Generation Profiles used in the 
Practitioner Toolkit” section 
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RA Model 
Topology

§ Simplified regional topology
§ Converted to PNM contractual representation 
§ Approximated transmission constraints into/out of 

PNM – Four Corners, PNM – North, and PNM – South
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Import Framework
Challenge in considering imports:
The study needed to develop a methodology 
to consider the potential benefits of importing 
excess renewable energy from neighboring 
systems without relying on imports of fossil-fuel 
resources. To accomplish this, the study 
developed a novel, four-step process to 
evaluate resource adequacy and availability of 
imports across the West.

Objectives:
§ Account for coherent weather conditions 

across the West
§ Capture regional load and resource diversity 

benefits
§ Respect transmission constraints
§ Avoid free-ridership and net reliance on fossil 

generation outside of PNM
§ Avoid subsidizing RA for the rest of the West

Step 3. Add technology-agnostic energy-limited resources to the 
rest of the West to exactly avoid all unserved energy.

§ Example week: Add 43,896 MW of energy-limited resources that 
can provide up to 3,830 GWh of energy in the example week. 
This is an 11.5-hour resource.

Step 1. Add currently planned clean resources (based on IRPs) 
and remove all emitting resources across the West.

Step 2. Simulate operations in the West without PNM to identify 
shortages not associated with PNM.

Example January week 
results without PNM:
Total shortages: 
3,830 GWh
Max shortage:
43,896 MW
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Import Framework 
(continued)

Step 4. Add PNM loads and resources back into the model 
and attribute any simulated shortages to PNM.

Same January week with PNM 
(and needs met in rest of West):
Total PNM shortages: 58.7 GWh
Max PNM shortage: 868 MW

Outcome
The interchange between PNM and the rest of the West 
was evaluated across a wide range of coherent weather 
conditions experienced across the entire region. This 
included load variation as a function of temperature and 
wind and solar output consistent with real weather 
systems as they are experienced across the West. 

The process allowed PNM to benefit from interregional 
coordination, while isolating the resource adequacy 
challenges specifically attributable to meeting PNM 
loads. 

Sensitivity analysis was also conducted where PNM was 
islanded and had to meet resource adequacy 
requirements in isolation. 
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West-wide resource 
portfolio
West-wide IRP Review
§ Utility preferred plans / reference scenarios (pre-IRA)
§ Announced retirements and installations
§ 80 GW of renewables, 37 GW of storage, -8 GW fossil

West-wide BTM-solar forecast
§ +26 GW by 2035, zip-code granularity 

(details in backup)
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Baseline Scenario Results

Optimized Diverse Resources Multi-Day Storage

EnCompass
Portfolio 

(based on PRM)

GridPath Adjusted 
Portfolio (based on 

0.1 days/year 
LOLE)

EnCompass
Portfolio 

(based on PRM)

GridPath Adjusted 
Portfolio (based on 
0.1 days/year LOLE)

EnCompass
Portfolio 

(based on PRM)

GridPath Adjusted 
Portfolio 

(based on 0.1 
days/year LOLE)

GridPath LOLE (days/year) 0.00 0.09 0.07 0.04 0.00 0.04

H2 CT Capacity (MW) 1000 600 520 500 760 400

H2 Generation (GWh) 511 508 410 402 371 445

H2 Capacity Factor (%) 5.8% 9.7% 9.0% 9.2% 5.6% 12.7%

H2 Fuel Offtake (metric tons H2/yr.)1 36,504 36,289 29,289 28,717 26,503 28,574

H2 Renewable Capacity Need (MW)2 626 622 502 492 454 490

H2 Water Usage (million gallons) 3 171 170 137 134 124 134

H2 Water Need (% of current PNM use) 6% 6% 5% 5% 4% 5%

1  Hydrogen fuel offtake is based an H2 LHV of 33.33 kWh/kg H2 and a 42% efficient combustion turbine
2  Renewable capacity needed is based on a 50/50 wind solar split and annual CFs of 42% (wind) and 32% (Solar)
3  H2 water usage is based on an 18 L H2O/kg H2 conversion of the fuel offtake needed 

These results quantify the PNM loss of load expectation across all three portfolios. Capacity and generation was also provided for the Hydrogen 
(H2) CT capacity as this resource serves as the marginal capacity resource (or resource of last resort) to meet demand, after accounting for 
variable renewables and storage. The hydrogen data quantifies both the capacity (MW) and energy (GWh and fuel requirement) needed for RA. 

First the results are provided for the EnCompass portfolio directly, then the portfolio was iterated by reducing hydrogen CT capacity (in 100 MW 
blocks) until the RA criterion was met. This shows the amount of firm capacity that could be avoided while still meeting the RA criterion. This 
iteration is discussed further in Resource Adequacy & Capacity Expansion Iterations section. 
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Baseline Scenario Results (continued)

Optimized Diverse 
Resources 

Multi-Day 
Storage

LOLE (days/year) 0.09 0.04 0.04

LOLH (hours/year) 0.34 0.38 0.23

EUE (MWh/year) 29 25 13

NEUE (ppm) 2.4 2.1 1.1

Average event size
(MWh per loss of load day) 330 597 325

Average hourly shortage
(MWh per loss of load hour) 85 66 55

Average event duration (hrs) 3.9 9.1 5.9

Event duration distributionsA complete set of resource adequacy results are provided in the table for the portfolios 
where the hydrogen CT capacity was adjusted so that the LOLE below the 0.1 days/year 
reliability criterion.  
Interestingly, the Diverse Resources portfolios shows relatively low LOLE (0.4 days/year) but 
the highest average event size and duration, likely driven by times where the geothermal 
resource was unavailable. This highlights the importance of using multiple metrics  to 
evaluate resource adequacy. 

The multi-day storage portfolio, in contrast, saw the highest frequency of short during 
shortfalls (1-hour) relative to the longer duration shortfalls. 
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Baseline Case Results
The exceedance curves shows the 
frequency of shortfall events 
exceeding a certain size in terms 
of capacity or MW (left) and 
energy or MWh (right)
This helps better characterize the 
individual shortfall events rather 
than the averages presented in 
the previous slide. 
This information can be used to 
help identify the potential size of 
resources or imports that would be 
required to mitigate additional 
risk, or to understand the potential 
magnitude and impacts 
associated with shortfall events. 
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Baseline Case EUE (MWh) by month-hour
Optimized Diverse Resources Multi-day storage

Heatmaps show the hour of 
day (rows) and month 
(columns) when loss of load 
risk, measured in MWh in this 
example, is highest.
Under Baseline load 
assumptions, risk is still 
centered in summer 
evening hours, with some 
risk beginning to show up 
during winter nights. 
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Baseline Case H2 Dispatch (avg MW) by month-hour
Optimized Multi-day storage

Heatmaps of the average hydrogen 
dispatch show similar findings as the 
previous slide. 

They hydrogen CT capacity is 
needed most during summer 
evenings and early morning hours, as 
well as winter nights. 

The heatmaps of the average 
dispatch can be used to help 
determine when hydrogen fuel may 
be needed and to what magnitude. 
This can be helpful when contracting 
for hydrogen fuel and evaluating fuel 
storage needs. 
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Optimized Portfolio – Example Week
Observations
§ This is a challenging week – small amount of 

unserved energy observed on day 6
§ Most excess solar is used to charge battery storage
§ Some excess solar is exported around sunrise and 

sunset
§ H2 Peakers are running mostly during evenings and 

overnight
§ Imports are available during the day (excess solar 

in the rest of the West) and occasionally at night
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Multi-day storage modeling
The study evaluated multi-day storage (100-hour) scheduling 
for resource adequacy. This raised important questions about 
how to manage state of charge given uncertainty in future 
conditions over days, weeks, and months.

GridPath did not attempt to optimize storage dispatch for 
economics. Depending on how future dispatch decisions 
account for uncertainty in future loads, renewable output, 
hydro, and outages over days to months, economic dispatch 
of energy storage could lead to lower storage availability 
during constrained periods and more shortages than are 
identified in this study. Instead, the study approximates a 
conservative operating strategy in which multiday storage is 
only discharged when needed to avoid lost load. During all 

other circumstances, the study assumes that the operator 
prioritizes charging multiday storage to maximize the state of 
charge in case it is needed. To approximate this operating 
strategy while maintaining energy balance, GridPath was run 
with the following settings:
§ Optimized over a full year with perfect foresight. This 

increased the problem size, led to longer runtimes, and 
overestimated forecast accuracy.

§ Applied a periodic boundary constraint on the state of 
charge across the year to ensure energy balance.

§ Applied a penalty to any depletion of the state of charge 
from the maximum level, so that it would only discharge if 
needed to avoid a larger penalty (i.e., unserved energy).
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Multi-Day Storage Utilization 
This chart shows the multi-day storage state of 
charge across an entire year of operation with 
and without the state of charge depletion 
penalty (described on the previous slide).

Without the penalty (dashed grey line), multi-
day storage has a low state of charge 
throughout the winter months until over-supply 
from wind and solar in the spring increases 
state of charge. The storage is depleted during 
the summer peak conditions (August) and then 
quickly recharges at the end of the year to be 
available during a December RA event.

With the penalty (dark solid line), multi-day 
storage stays fully charge except when 
needed most for reliability. 
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What 
duration 
of storage 
is actually 
used? 

While the full 100-hours of 
storage is needed at times 
for reliability, it is a rare 
occurrence. In about 90% 
of the years evaluated, less 
than 20 hours of storage 
was utilized by the model.  
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Baseline Case Sensitivity to Imports
Optimized (with imports) Optimized 

(without imports)

EnCompass
Portfolio 
(based on 

PRM)

GridPath 
Adjusted 
Portfolio 

(based on 0.1 
days/year LOLE)

EnCompass
Portfolio

GridPath 
Adjusted 
Portfolio

GridPath LOLE 
(days/year) 0.00 0.09 0.07 13.3

H2 CT 
Capacity 
(MW)

1000 600 1000 600

H2 Generation 
(GWh) 511 508 889 884

H2 Capacity 
Factor (%) 5.8% 9.7% 10.1% 16.8%

A sensitivity was conducted on the Optimized portfolio 
to assess the impact of imports on resource adequacy. 

Both the original EnCompass portfolio (prior to 
removing surplus hydrogen (H2) CT capacity) and the 
GridPath Adjusted portfolio were evaluated without 
any imports available. 

The results showed that the original EnCompass 
portfolio remained resource adequate (0.07 days/year 
LOLE), but the iterated portfolio became significantly 
unreliable (13 days/year).

This illustrates the tradeoff between increased 
interregional coordination and “going it alone.” Both 
are options available to meet resource adequacy 
requirements, but without imports an additional 400 
MW of hydrogen CTs are required (>$250 million in 
capital costs) to maintain resource adequacy without 
fully leveraging imports
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Optimized 
Portfolio EUE 
(MWh) by 
month-hour

With Imports Without Imports
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Optimized 
Portfolio H2 
Dispatch 
(average MW) 
by month-hour

With Imports Without Imports
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High Electrification Demand Results
Baseline Demand Forecast 

(Optimized)
High Electrification Forecast 

(Optimized)

EnCompass
Portfolio 

(based on PRM)

GridPath 
Adjusted 
Portfolio 

(based on 0.1 
days/year LOLE)

EnCompass
Portfolio 

(based on PRM)

GridPath 
Adjusted 
Portfolio 

(based on 0.1 
days/year LOLE)

LOLE (days/year) 0.00 0.09 0.00 0.05

LOLP (% of years) 0.0% 5.9% 0.0% 2.2%

LOLH (hrs/year) 0.00 0.34 0.00 0.42

EUE (MWh/year) 0.0 28.7 0.0 38.1

H2 CT Capacity (MW) 1000 600 1520 1000

H2 Generation (GWh) 511 508 927 922

H2 Capacity Factor (%) 5.8% 9.7% 7.0% 10.5%

§ EnCompass overbuilds the 
portfolio, using the High 
Electrification forecast, similar 
to the Baseline forecast result

§ The High Electrification based 
portfolio requires both more 
capacity and energy from 
the Hydrogen (H2) CTs, 
relative to the Baseline based 
portfolio

§ The High Electrification  
based portfolio experiences 
fewer years with shortages, 
but slightly more unserved 
energy and more loss of load 
hours, even though it has a 
smaller LOLE
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Baseline vs. High 
Electrification 
Risk Periods

Baseline High Electrification

EUE (MWh/yr.) by month/hour bins

§ Seasonal shift – winter becomes the 
highest risk period 

§ Remaining RA risk under High 
Electrification is more concentrated 
on winter days

§ Winter events may span most of the 
day due to energy shortages

§ Some summer evening risk remains
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Baseline vs. High 
Electrification 
Event Duration

Distribution of event durations

§ Remaining events under High 
Electrification tend to be longer, 
but still less than 24-hours

§ Energy constraints become more 
pronounced in winter, high 
electrification scenarios
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Load Flexibility Modeling
Flexible load formulation:
§ End use load shapes developed using 

EnergyPATHWAYS were assumed to represent timing 
and magnitude of energy services demand

§ Load can be experienced on the grid in advance 
and “stored” until the energy services are 
demanded (e.g., pre-cooling)

§ Model applies losses to demand “stored” in each 
hour and further constrains:
• Maximum dispatched load (fixed value equal 

to the maximum of the original end use load)
• Maximum “stored” demand (value varies 

hourly, derived based on the demand shape 
and duration parameter)

% Flexible Duration 
(hrs)

Hourly 
Losses2

Max Load 
(MW) 

Res. HVAC 35% 1 20% 269

Res. Water Heating 35% 8 2.5% 78

Com. HVAC 34% 1 20% 80

Com. Water Heating 34% 4 2.5% 14

Light Duty Vehicles 38% 8 0% 169

Maximum simultaneous flexible load (MW) 505

1  https://www.nrel.gov/docs/fy20osti/73336.pdf and 
https://www.nrel.gov/docs/fy21osti/79094.pdf

2  Hour-to-hour losses are estimated

Flexible load parameters were designed to align 
with the 2035 flexible load treatment in the NREL 
Electrification Futures Study1:
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Load Flexibility Results

§ Flexible load reduced the need for battery storage by about 
600 MW and 3,500 MWh

§ Flexible load did not reduce the need for H2 CTs, as these 
provide both capacity and energy to the system

Portfolio Without 
Flexible Load

Portfolio With 
Flexible Load

H2 CT Capacity (MW) 950 950

Storage MW 1,565 950
Storage MWh
(MW x duration) 9,155 5,626

LOLE (days/year) 0.07 0.10

EUE (MWh/year) 17.0 15.3
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Load Flexibility Results
§ On summer days with capacity constraints, flexible loads offer a good substitute for batteries by shifting 

demand away from brief periods of RA risk
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Load Flexibility Results
§ On winter days with energy shortages, daytime charging and water heating flexibility provide value, but 

HVAC flexibility is not utilized, likely due to losses
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Key modeling challenges and observations (1)

§ There are many ways to experience unserved energy and 
the shortages observed in storage-dependent systems will 
depend on the specifics of the objective function
• Energy storage losses can result in more unserved energy, 

so if the model only cares about minimizing unserved 
energy, it may not use the storage and instead see very 
large MW shortages in some hours, though fewer MWh 
overall
• A penalty term on the maximum shortage helps to avoid 

these very large events, but results in more MWh overall
§ RA metrics can be quite different for the same system, 

depending on the objective function
• Adding a penalty to the maximum unserved energy will 

tend to increase EUE, LOLH, event durations, and 
potentially LOLE, but will decrease the size of capacity 
shortages

• The differences seems greatest in energy-short systems 
(i.e., when we tested the portfolios without capacity 
additions, which bring both capacity and energy to the 
system)
• As a result, capacity shortages observed in the base runs 

(i.e., without capacity additions) were not always a good 
indicator of how much capacity was needed to achieve 
the LOLE target

§ In the final runs:
• Objective function equally weighed total unserved 

energy and maximum unserved energy in each 
optimization window to avoid unnecessarily large 
capacity shortages. This may have resulted in slightly 
higher EUE.
• Iterated on capacity additions to achieve LOLE < 0.1 days 

per year, rather than relying on base simulation results to 
estimate capacity needs 

RA metrics in storage-dependent systems



80

Key modeling challenges and observations (2)

§ Weekly optimizations with periodic boundary constraints 
could not carry energy across weeks and therefore could 
not appropriately value multi-day energy storage

§ Annual optimizations required much longer runtimes and 
may risk overstating the value of multi-day energy storage 
due to the assumption of perfect foresight

§ Initial tests were frequently drawing down the multi-day 
storage state of charge and it was not clear if this was 
needed to avoid unserved energy or if it was just possible 
while avoiding unserved energy

• To better understand what was needed from multi-day 
storage, we applied a small penalty (0.01% of unserved 
energy penalty) to any depletion of the state of charge 
below the maximum state of charge

• This significantly reduced multi-day storage dispatch. It 
approximated an operational strategy in which the 
storage is kept full when possible, in order to be 
prepared for unforeseen events.

§ Storage/thermal and multi-day storage/battery co-
optimization were important strategies for ensuring that 
capacity could be utilized during events

• Example: using thermal resources or multi-day storage to 
charge batteries in advance of events

• GridPath was not run in economic mode for this project 
and did not consider forecast errors, so it is unclear 
whether these operational practices would arise in more 
realistic scheduling and dispatch simulations or in real 
systems

Multi-day energy storage modeling
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Resource Adequacy 
& Capacity Expansion 
Iterations
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What is “round-trip modeling,” and why is it required?

Final Portfolio
PRM & ELCC

estimates

Portfolio of 
resource 
additions 

Resource 
Adequacy

Capacity 
Expansion

Portfolio meeting a 
PRM requirement

Current or potential 
future portfolios

Consistent Inputs 
& Assumptions

Demand Profiles Renewable Profiles
EnergyPATHWAYS Baseline & High Electrification

WECC-wide, multi-weather year 
NREL NSRDB & WindToolkit

WECC-wide, multi-weather year 

Traditional 
Treatment of 
Resource 
Adequacy in 
Planning Studies

§ Planning Reserve Margin (PRM) and Effective Load Carrying 
Capability (ELCC) are estimated before the capacity 
expansion model and used as an input into the modeling 
process

§ Portfolio effects and saturation effects can change the PRM 
and ELCC values depending on the make-up of the portfolio, 
load profile, and other interactions

§ If the capacity expansion portfolio differs from the one 
evaluated in the PRM and ELCC study, the resulting portfolio 
from the capacity expansion may not be resource adequate

§ This creates two potential errors: 1) the system may not be 
reliable, despite meeting the PRM, or 2) the system may be 
overbuilt, investing too much money in new capacity

§ In this process, the planner and regulator have no insight into 
whether or not an error exists or how large of an error it might 
be.

§ The process implicitly relies on the input PRM and ELCC to 
ensure resource adequacy, without backchecking the final 
portfolios. 

§ This is common practice in most IRPs across the country today. 
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Proposed solution: “round-trip” modeling
§ PRM and ELCC 

estimates can be 
used to seed the 
model, but less 
attention is required

§ Resource adequacy 
analysis is conducted 
after the portfolios 
are developed 
(portfolio and 
saturation effects are 
known)

§ The modeling 
process is iterated 
until the resource 
adequacy metric is 
achieved (see the 
following slide)

Iterative Modeling in Resource Adequacy and Capacity Expansion Planning

Adjust reserve margin 
or adjust specific 
resources based on 
shortfalls

YESNO

Meet reliability 
criteria?

Reliable 
portfolio of 
resource 
additions 

PRM & 
ELCC 

Estimates
(optional)

Final Portfolio

Timing and type 
of resource 
additions

Capacity 
Expansion

Resource 
Adequacy

GridPath RA
PNM & WECC-Wide

EnCompass
PNM Focus

Consistent Inputs 
& Assumptions

Demand Profiles Renewable Profiles
EnergyPATHWAYS Baseline & High Electrification

WECC-wide, multi-weather year 
NREL NSRDB & WindToolkit

WECC-wide, multi-weather year 
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Round-trip modeling iteration options
If the portfolio dos not meet 
the reliability criteria:
§ Option 1: Increase the PRM
§ Option 2: Adjust ELCC of 

resources
§ Option 3: Pairing of energy & 

capacity resources
§ Option 4: Reliability backstop 

with specific resource 
(marginal capacity resource)

In this study the marginal capacity resource was determined to be a hydrogen CT and as such, the hydrogen CT 
capacity was iterated until the resource adequacy criteria was met. 

Timing and type 
of resource 
additions

Adjust reserve margin 
or adjust specific 
resources based on 
shortfalls

YESNO

Meet reliability 
criteria?

Resource 
Adequacy

Capacity 
Expansion

EnCompass
PNM Focus

GridPath RA
PNM & WECC-Wide
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Benefits of an 
iterative, 
round-trip 
modeling 
approach

§ Less time and effort required to develop initial PRM and 
ELCC estimates (can avoid creating N-dimensional surfaces 
of ELCC as a function of various resource combinations)

§ The resulting portfolio is guaranteed to be resource 
adequate — the planner does not need to rely solely on 
the PRM for reliability

§ Portfolio and saturation effects of ELCC are explicitly 
captured

§ Planners and regulators have better insights into the costs 
associated with meeting the resource adequacy criteria.

§ Limitations: requires a smooth process to iterate between 
two different modeling approaches (capacity expansion 
and resource adequacy), requires the modeler to know or 
assume what the marginal resource is, does not extend 
easily to scenarios in which a combination of additional 
resources may outperform the identified “marginal” 
resource
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Results of round-trip modeling: Balancing reliability and 
costs through iteration

§ Each of the three portfolios developed by EnCompass exceeded the resource adequacy criterion.
§ This is likely due to two reasons: 1) more accurate inclusion of imports in GridPath, and 2) the ELCC 

curves for solar, wind, and storage, did not consider portfolio effects.
§ To resolve the overbuild, the hydrogen (H2) CT capacity — determined to be the marginal capacity 

resource built to meet the PRM requirement — was iterated down in 100 MW increments until the RA 
criterion (1-day-in-10-year LOLE) was met, but not exceeded.

§ Results showed that 400 MW of hydrogen CT capacity could be avoided (~$250 million in savings), 
but total energy and fuel needs remain largely unchanged. 


