Advancing resource adequacy analysis with the GridPath RA Toolkit

A case study of the Western US

Elaine Hart, Moment Energy Insights
Ana Mileva, Blue Marble Analytics

ESIG Webinar
October 6th, 2022
Open-source Toolkit for conducting RA analysis in the Western US using publicly available data.

The Toolkit consists of:

- **GridPath**, Blue Marble’s open-source power system platform, which includes capacity expansion, production cost, and RA modeling: https://github.com/blue-marble/gridpath

- **Accompanying code** to develop and post-process RA runs in GridPath: https://github.com/MomentEI/GridPath_RA_Toolkit

- **Western US Dataset**, which includes the load, resource, and transmission data for conducting RA assessments of the Western US in 2026: www.gridlab.org/GridPathRA_Toolkit

Users can customize the datasets to evaluate other systems, years, or portfolios. Users can also modify the code to leverage additional capabilities in GridPath or to create new functionality.
GridPath
RA Toolkit

Key features for RA analysis

Weather correlations
Two modes available for capturing key weather correlations between load and resource availability over very large geographical areas: Monte Carlo Simulation and Weather-Synchronized Simulation.

Energy-limited resources
Dynamic dispatch of energy-limited resources, like hydropower, energy storage, and hybrid resources to avoid lost load.

Transmission and regional coordination
Dynamic transmission flow modeling provides transparency into weather-coherent and transmission-constrained market availability.
Western US Case Study

Monte Carlo simulation used to explore 3 scenarios:

- No Additions Scenario – planned retirements, but no planned additions through 2026
- California Additions Scenario – layers on CPUC Preferred System Plan additions through 2026
- Less Coal Scenario – removes an additional 11 GW of coal resources from the California Additions Scenario
- Also includes subregional analysis for CAISO- and WRAP-like footprints

Weather-Synchronized simulation used for a deep dive into the No Additions Scenario
Monte Carlo simulation

- Mixes and matches shapes from similar historical days
- Can generate many possible conditions, leading to high precision
- Conditions are not fully physically consistent and may not fully preserve all correlations
No Additions Scenario

Planned retirements, but no planned additions
No Additions Scenario

Loss of load metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$LOLP_{year}$</td>
<td>69%</td>
</tr>
<tr>
<td>$LOLE$ (days/10yrs)</td>
<td>18.2</td>
</tr>
<tr>
<td>$LOLH$ (hrs/yr)</td>
<td>4.23</td>
</tr>
<tr>
<td>EUE (MWh/yr)</td>
<td>13,797</td>
</tr>
<tr>
<td>EUE_{norm} (ppm)</td>
<td>19.4</td>
</tr>
<tr>
<td>Average Event Duration (hrs)</td>
<td>2.33</td>
</tr>
</tbody>
</table>

West-wide loss of load events/risk:

- Are concentrated in the evening on hot summer days
- Peaks during HE 18 (6-7pm PDT) in August
- No shortages longer than 8 hours
<table>
<thead>
<tr>
<th>EVENT TOTAL SHORTAGE (GWh)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVENT MAXIMUM SHORTAGE (GW)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>>17</td>
</tr>
<tr>
<td>0.1</td>
<td>0.01</td>
<td>0.72</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.01</td>
<td>0.60</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>1.0</td>
<td>0.01</td>
<td>0.50</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>1.5</td>
<td>0.01</td>
<td>0.40</td>
<td>0.01</td>
</tr>
<tr>
<td>2.0</td>
<td>0.01</td>
<td>0.30</td>
<td>0.01</td>
</tr>
<tr>
<td>2.5</td>
<td>0.01</td>
<td>0.20</td>
<td>0.01</td>
</tr>
<tr>
<td>3.0</td>
<td>0.01</td>
<td>0.10</td>
<td>0.01</td>
</tr>
<tr>
<td>3.5</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Energy and capacity shortages

Expected days of lost load in 10 years
Perfect capacity additions

GridLAB

Expected days of lost load in 10 years

EVENT TOTAL SHORTAGE (GWh)

EVENT MAXIMUM SHORTAGE (GW)

REMAINING EVENTS

AVOIDED EVENTS
Targeted energy-limited capacity additions
Targeting solutions – an efficient frontier

Perfect Capacity Need 9.3 GW
Targeting solutions – an efficient frontier

Capacity and duration efficient frontier

4-hr Capacity Need 9.3 GW
Perfect Capacity Need 9.3 GW
Targeting solutions – an efficient frontier

Capacity and duration efficient frontier

- 2-hr Capacity Need: 12.7 GW
- 4-hr Capacity Need: 9.3 GW
- Perfect Capacity Need: 9.3 GW
Subregional analysis approach

<table>
<thead>
<tr>
<th>Subarea</th>
<th>WECC BAAs/Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAISO</td>
<td>CIPB, CIPV, CISC, CISD, VEA, TH_Mead (partial), TH_PV (partial)</td>
</tr>
<tr>
<td>WRAP</td>
<td>AVA, AZPS, BANC, BPAT, CHPD, DOPD, GCPD, IPFE, IPMV, IPTV, NEVP, NWMT, PACW, PAID, PAUT, PAWY, PGE, PSEI, SCL, SPPC, SRP, TIDC, TPWR, TH_Malin, TH_Mead (partial), TH_PV (partial)</td>
</tr>
<tr>
<td>Excluded</td>
<td>EPE, IID, LDWP, PNM, PSCO, TEPC, WACM, WALC, WAUW</td>
</tr>
</tbody>
</table>

Weather-coherent and transmission-constrained imports:

When imports are allowed, unserved energy for a given subarea (CAISO or WRAP) is only recorded to the extent that it was observed in the islanded simulation AND in the West-wide simulation under the same weather conditions.
CAISO subarea analysis

No Additions Scenario

<table>
<thead>
<tr>
<th>Metric</th>
<th>CAISO as an Island</th>
<th>CAISO w/ imports</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOLP_{year}</td>
<td>100%</td>
<td>69%</td>
</tr>
<tr>
<td>LOLE (days/10yrs)</td>
<td>335</td>
<td>18.2</td>
</tr>
<tr>
<td>LOLH (hrs/yr)</td>
<td>86.8</td>
<td>4.15</td>
</tr>
<tr>
<td>EUE (MWh/yr)</td>
<td>225,373</td>
<td>12,134</td>
</tr>
<tr>
<td>EUE_{norm} (ppm)</td>
<td>1,083</td>
<td>58</td>
</tr>
<tr>
<td>Average Event Duration (hrs)</td>
<td>2.59</td>
<td>2.29</td>
</tr>
<tr>
<td>Perfect Capacity Need (GW)</td>
<td>11.2</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Accounting for imports:
- Significantly reduces the LOLE & LOLH
- Reduces perfect capacity need by 3 GW
- Concentrates identified loss of load risk into fewer months and hours of the day
- Reduces event durations

Note: This study uses a physical representation of CAISO and does not account for resources outside of CAISO that are contractually obligated to serve LSEs within CAISO.
CAISO subarea analysis

No Additions Scenario

Accounting for imports has the greatest impact on resource needs when RA solutions are duration-limited.

Note: This study uses a physical representation of CAISO and does not account for resources outside of CAISO that are contractually obligated to serve LSEs within CAISO.
California Additions Scenario

Additional 28 GW of clean energy in CA

<table>
<thead>
<tr>
<th>Resource</th>
<th>Total CAISO Additions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass MW</td>
<td>+107</td>
</tr>
<tr>
<td>Geothermal MW</td>
<td>+184</td>
</tr>
<tr>
<td>Wind MW</td>
<td>+3,673</td>
</tr>
<tr>
<td>Utility-scale solar MW</td>
<td>+11,000</td>
</tr>
<tr>
<td>Storage MW</td>
<td>+12,749</td>
</tr>
<tr>
<td>Storage MWh</td>
<td>+51,780</td>
</tr>
<tr>
<td>Total MW</td>
<td>+27,713</td>
</tr>
</tbody>
</table>

*Additions are roughly consistent with the CPUC Preferred System Plan in 2026

This simulation identifies only 7 events in 1,000 years of simulated conditions, easily meeting all of the tested RA standards
Less Coal Scenario

Incorporates CA additions, retires ~11 GW of coal

<table>
<thead>
<tr>
<th>Resource</th>
<th>Net West-Wide Additions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass MW</td>
<td>+107</td>
</tr>
<tr>
<td>Geothermal MW</td>
<td>+184</td>
</tr>
<tr>
<td>Wind MW</td>
<td>+3,673</td>
</tr>
<tr>
<td>Utility-scale solar MW</td>
<td>+11,000</td>
</tr>
<tr>
<td>Storage MW</td>
<td>+12,749</td>
</tr>
<tr>
<td>Storage MWh</td>
<td>+51,780</td>
</tr>
<tr>
<td>Coal MW</td>
<td>-10,922</td>
</tr>
<tr>
<td>Total MW</td>
<td>+16,791</td>
</tr>
</tbody>
</table>
Adding the CPUC Preferred System Portfolio resources and retiring ~11 GW of additional coal (beyond current plans):

- Reduces LOLE, LOLH, and capacity need
- Further concentrates loss of load risk into August HE 18-19 (6-8pm PDT)
- Limits most events to 2 hours

Less Coal Scenario

Loss of load metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Less Coal Scenario</th>
<th>No Additions Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOLP_{year}</td>
<td>29%</td>
<td>69%</td>
</tr>
<tr>
<td>LOLE (days/10yrs)</td>
<td>4.13</td>
<td>18.2</td>
</tr>
<tr>
<td>LOLH (hrs/yr)</td>
<td>0.80</td>
<td>4.23</td>
</tr>
<tr>
<td>EUE (MWh/yr)</td>
<td>2,126</td>
<td>13,797</td>
</tr>
<tr>
<td>EUE_{norm} (ppm)</td>
<td>3.0</td>
<td>19.4</td>
</tr>
<tr>
<td>Average Event Duration (hrs)</td>
<td>1.94</td>
<td>2.33</td>
</tr>
</tbody>
</table>
| **Perfect Capacity Need (GW)**
 One-day-in-10-year standard | 3.8 | 9.3 |
Less Coal Scenario

Solar plus storage helps eliminate shortfalls, despite additional coal retirements

Note: Plots represent resource availability to serve load and provide contingency reserves in each hour.
WRAP subarea analysis

Less Coal Scenario

WRAP – Islanded
Loss of load hours per year

WRAP – With imports
Loss of load hours per year

<table>
<thead>
<tr>
<th>Metric</th>
<th>WRAP as an Island</th>
<th>WRAP w/ Imports</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOLP<sub>year</sub></td>
<td>100%</td>
<td>29%</td>
</tr>
<tr>
<td>LOLE (days/10yrs)</td>
<td>451</td>
<td>4.13</td>
</tr>
<tr>
<td>LOLH (hrs/yr)</td>
<td>196</td>
<td>0.80</td>
</tr>
<tr>
<td>EUE (MWh/yr)</td>
<td>275,929</td>
<td>2,118</td>
</tr>
<tr>
<td>EUE<sub>norm</sub> (ppm)</td>
<td>808</td>
<td>6.2</td>
</tr>
<tr>
<td>Average Event Duration (hrs)</td>
<td>4.34</td>
<td>1.94</td>
</tr>
<tr>
<td>Perfect Capacity Need (GW) One-day-in-10-year std</td>
<td>10.1</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Accounting for imports:
- Significantly reduces LOLE & LOLH
- Reduces perfect capacity need by 6 GW
- Eliminates identified winter risk and concentrates summer risk into fewer months and hours of the day
- Significantly reduces event durations

Note: This study uses a physical approximation of the WRAP footprint, which includes loads and resources in the following WECC BAs: AVA, AZPS, BANC, BPAT, CHPD, DOPD, GCPD, IPFE, IPMV, IPTV, NEVP, NWMT, PACW, PAID, PAUT, PAWY, PGE, PSEI, SCL, SPPC, SRP, TIDC, TPWR
WRAP subarea analysis

Less Coal Scenario

As more coal is retired, identified needs outside of CA become highly sensitive to import assumptions.

Note: This study uses a physical approximation of the WRAP footprint, which includes loads and resources in the following WECC BAs: AVA, AZPS, BANC, BPAT, CHPD, DOPD, GCPD, IPFE, IPMV, IPTV, NEVP, NWMT, PACW, PAID, PAUT, PAWY, PGE, PSEI, SCL, SPPC, SRP, TIDC, TPWR
Without accounting for utility plans, the West was physically short in 2026
- Shortages were short in duration (mostly 4 hours or less) and occurred on hot summer evenings
- Incorporating planned additions in California resulted in a resource adequate system in 2026
- If utilities execute on current plans, accelerating 11 GW of additional coal retirements does not pose an insurmountable RA challenge
- Resource needs are highly sensitive to import assumptions
- Import policies that account for coherent weather conditions across the West and transmission constraints can be used to recognize regional weather risk, while reducing the potential for overbuild
Simulated days are limited to conditions with coherent high resolution hourly data.
- Ensures that conditions are physically consistent and preserves all correlations.
- Allows for transparent investigation into the weather patterns that drive loss of load risk.
Weather-Synchronized simulation

Comparison to Monte Carlo

Both methods identify similar risks.

Loss of load risk is slightly more concentrated in Weather-Synchronized simulation.
Weather-Synchronized simulation

Comparison to Monte Carlo

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Perfect capacity needed for one-day-in-10-year standard (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Additions Scenario (Monte Carlo)</td>
<td>9.3</td>
</tr>
<tr>
<td>No Additions Scenario (Weather-Synchronized 2007-2020)</td>
<td>11.1</td>
</tr>
<tr>
<td>No Additions Scenario (Weather-Synchronized 2007-2014)</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Weather-Synchronized simulation identifies greater needs if recent (synthesized) years are included, and smaller needs if they are not.

Publicly available wind data after 2014 will be critical for evaluating RA risk, particularly for higher renewable penetrations.
Weather insights
An application of Weather-Synchronized simulation

High LOLPs driven by widespread heat events across Western load centers

These events also see relatively low wind speeds

[Data source: NOAA High-Resolution Rapid Refresh (HRRR) Data Archive:
AWS Open Data Program
(https://mesowest.utah.edu/html/hrrr/)]
Weather insights

An application of Weather-Synchronized simulation

June 12, 2019
Seattle: 95°F
Portland: 98°F
Sacramento: 103°F
Phoenix: 112°F
Los Angeles: 72°F
San Diego: 74°F

Geographically isolated heat does not result in high LOLP due to load diversity

July 16, 2018
Seattle: 92°F
Portland: 98°F
Phoenix: 105°F
San Francisco: 69°F
LA & San Diego: 79°F

Individual utility plans may overemphasize these events

July 13, 2020
Seattle: 76°F
Portland: 80°F
Phoenix: 114°F

Estimating LOLP based on weather

An application of Weather-Synchronized simulation

Logistic regression approach:

$$LOLP_{ij} = 1/(1 - e^{-w_{ij}})$$

$$w_{ij} = aX_i + bY_i + cz_{ij} + d$$

daily weather variables, daylight hours & weekend indicator, hydro conditions

Technical note: the very small number of loss of load days makes it challenging to avoid overfitting with these types of models. See report for more discussion of this issue and the steps we took to avoid overfitting.
Identifying drivers of RA risk

An application of Weather-Synchronized simulation

In 2026, weather is the biggest driver of RA risk, high temperature conditions in particular.

Other systems, for example more highly renewable systems and/or more electrified systems, may have more complex drivers.
Estimated LOLP: 1.2%

Despite the historic heat dome in the Pacific Northwest, milder conditions in the rest of the West mitigate RA risk.

An application of Weather-Synchronized simulation

June 2021 heat dome event

Estimated LOLP: 1.2%

June 28, 2021
Seattle: 108°F
Portland: 116°F

Examining impacts of weather trends

An application of Weather-Synchronized simulation

LOLE (DAYS EVERY 10 YEARS)

- Estimated **LOLE**
- Simulated **LOLE**

Longer term weather record may not be indicative of the near future. The selection of which weather years to consider is a policy decision.

LOLE (DAYS EVERY 10 YEARS)

- Estimated
- Simulated
Key Takeaways

Weather-Synchronized simulation

- Weather-Synchronized simulation is a viable alternative to Monte Carlo
- Captures physical relationships/correlations between key variables and across time
- Improved transparency relative to Monte Carlo
- Allows for weather-based analysis and estimation
- Does not seem to miss extreme conditions, primarily because the most extreme hot weather is in the recent historical record
- Could be severely limited by data availability – public wind data for years after 2014 is critical
Practical uses

How can stakeholders use the GridPath RA Toolkit?

- Can be leveraged by regulators, utilities, and others to conduct independent and publicly accessible RA analysis
- Ready-to-use platform for 2026 and three scenarios
- Algorithms and datasets can be adapted to different conditions
- Can be customized for LSEs and RA programs by layering ownership and contractual information
- Researchers and analysts may explore questions not in this study, such as future climate sensitivities and increased electrification
Questions?

Final report and data will be made available at:
www.gridlab.org/GridPathRAToolkit

For more information about GridPath or this project, please reach out to us:

Ana Mileva
ana@bluemarble.run

Elaine Hart
elaine@momentenergyinsights.com