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Robust and thoroughly vetted RA analyses will be critical to maintaining 
reliable supply as the power sector undergoes the clean energy transition. 
Current analytical methods used in RA analysis may be insufficient for 
analyzing RA of power systems that rely heavily on renewable energy 
and energy storage. Current practices are also characterized by limited 
transparency and inconsistency across jurisdictions. This work seeks to advance 
RA analysis by better characterizing three phenomena that are critical to 
understanding RA: weather-driven relationships between load and resource 
availability; capabilities and constraints of energy limited resources; and 
transmission flows and regional coordination. To improve transparency and 
accessibility, our approach leverages publicly available data and an open-source 
power system model (GridPath). The data and algorithms in this study are 
referred to as the GridPath RA Toolkit (“Toolkit”) and are shared publicly.

The Toolkit offers two simulation modes to estimate resource adequacy 
challenges and their probabilities: a Monte Carlo Simulation mode, which 
samples from historical weather conditions to generate plausible combinations 
of load conditions and weather-driven resource availability (wind, solar, and 
thermal derates); and a Weather-Synchronized Simulation mode, which tests 
a more limited set of coherent weather conditions from the historical record. 
Both simulation modes test a wide range of hydro conditions and use Monte 
Carlo analysis to test unit forced outages.

We illustrate the Toolkit’s features with a near term Western US case study that 
tests the physical capabilities of the Western Interconnect, excluding Canada 
and Mexico. We use the Monte Carlo Simulation mode to test three scenarios, 
each with a different hypothetical resource portfolio across the West in 2026. 
We find that if current retirement plans come to fruition and utilities take no 
incremental action between now and 2026 (the No Additions Scenario), the 
system would need 8.8-9.9 GW of additional capacity with at least 3 hours of 
duration to achieve a one-day-in-10-year standard. We also find that if California 
utilities add resources in line with the California Public Utility Commission’s 
Preferred System Plan through 2026 (the California Additions Scenario), these 
additions would meet all of the identified West-wide capacity needs. We 
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also show that the retirement of an additional 11 GW of coal  (the Less Coal 
Scenario) would not create an insurmountable resource adequacy challenge if 
utilities continue with current plans. Subregional analysis of these scenarios is 
provided to demonstrate how import policies can account for coherent weather 
across the broader West and to illustrate how sensitive RA findings are to 
import assumptions.

Finally, we investigate the limitations of Monte Carlo analysis for estimating 
weather-dependent system conditions in RA analysis by comparing the Monte 
Carlo Simulation results to Weather-Synchronized Simulation results. We find 
that Weather-Synchronized Simulation better captures correlations during 
the most extreme events, but is highly sensitive to the years over which data 
is available. We flag expansion of publicly available hourly datasets as critical 
to sound RA modeling and we introduce a statistical method for extending 
Weather-Synchronized Simulation results to a much longer historical or 
simulated weather record.

This work demonstrates the importance of adequately capturing weather-
driven correlations in load and resource availability for interconnected systems 
over large geographic areas. It explores two methods of capturing these 
correlations and it illustrates how import policies can be designed to account 
for weather impacts outside of a particular subregion, utility, or RA program. 
It also shows how the expansion of public datasets, the development of open 
source tools, and the use of transparent and more granular RA metrics can be 
applied to improve resource adequacy decision making. 
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MOTIVATION

Recent years have seen a renewed focus 
on resource adequacy (RA) in the Western 
United States, as aging coal plants begin 
to retire and new technologies and policies 
are quickly changing the composition of 
the Western grid. Clean technologies are 
increasingly cost competitive, but also create 
new technical challenges for grid planners 
and operators tasked with maintaining 
system reliability. Amidst these changes, 
the West has also seen extreme weather in 
recent years, leading to both unusually high 
demand for electricity and exacerbation 
of risks to grid infrastructure. Robust and 
thoroughly vetted RA analyses will be critical 
to maintaining reliable supply as the power 
sector continues to evolve in the coming years. Current approaches to RA 
analysis face many challenges, notably substantial data requirements and lack 
of transparency as the complexities of the power sector and power system 
models grow. Modern RA approaches must grapple with the impact of weather 
on both demand and resource availability, the increasing reliance on energy-
limited resources such as batteries, and the potential for regional coordination 
to promote reliability through load and resource diversity across large 
interconnected systems. At the same time, they must offer transparency into 
the methodologies, assumptions, and data used to allow for meaningful vetting 
by regulatory agencies and other oversight bodies.

GRIDPATH RA TOOLKIT

With this motivation, GridLab sponsored this effort to build a toolkit, leveraging 
publicly available data sets and open-source power system analytical tools, 
that can assess resource adequacy for emerging power systems. The effort 
was conducted jointly by Moment Energy Insights and Blue Marble Analytics 
and leveraged GridPath, Blue Marble’s open-source platform for power system 
planning and optimization. In addition to promoting transparency, using an 
open-source tool in this application allows for continued development of model 
capabilities and customization to specific systems over time by the study 
team and by other organizations—these features are important as the nature 
of the resource adequacy challenge and the assumptions and simplifications 
necessary to assess resource adequacy are system-dependent and will change 
over time.

Modern RA approaches must 

grapple with the impact of 

weather on both demand 

and resource availability, the 

increasing reliance on energy-

limited resources such as 

batteries, and the potential for 

regional coordination to promote 

reliability through load and 

resource diversity across large 

interconnected systems. 
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In this phase, we focused on the following methodological priorities: 

• Weather-driven relationships between loads and resource availability 
across a large geographical region: Appropriately valuing load and 
resource diversity as well as improved regional coordination requires RA 
models to carefully account for spatial and temporal correlations between 
electric loads and weather-driven resource availability constraints (e.g., 
wind availability, solar availability, and thermal derates). This is especially 
challenging when interactions can occur over geographical areas that 
are similar in size or larger than the spatial extent of critical weather 
phenomena.

• Dispatch simulation capturing the capabilities and constraints of energy-
limited resources: Understanding the dynamic capabilities and limitations 
of energy-limited resources, such as hydropower and storage, is critical to 
evaluating their contributions toward resource adequacy. In particular, the 
ability to co-optimize energy-limited resources with variable renewables 
will help to unlock the potential of these resources.

• Transmission flows and regional coordination: Dynamic transmission 
flow optimization ensures that RA analysis takes into account physical 
transmission limits and transmission path constraints. It also ensures that 
the analysis recognizes the ability to co-optimize operations over large 
interconnected areas to unlock load and resource diversity benefits as well 
as the benefits of energy-limited dispatchable resources.

To test the capabilities of the system across a wide range of system conditions 
and to identify resource adequacy challenges, we relied on simplified 
optimization-based dispatch modeling using GridPath. For this RA analysis, 
GridPath minimized unserved energy subject to load, resource availability, 
contingency reserves, energy-related, and transmission constraints. The 
dispatch of all resources was co-optimized in order to account for the dynamic 
capabilities and limitations of energy-limited resources, like hydropower, energy 
storage, and hybrid renewable & storage systems, as well as the benefits of the 
transmission system.

The GridPath RA Toolkit provides a Monte Carlo Simulation option that uses a 
Markov Chain approach to sample historical weather conditions and generate 
plausible load, renewable availability, and thermal derates. The sampling 
method aims to strike a reasonable balance between the number of possible 
combinations that can be tested and the physical plausibility of the resulting 
conditions.  In this mode, Monte Carlo sampling is also used to randomly draw 
the hydro conditions for each simulated year and to simulate random forced 
outages.

While it is fairly common to use Monte Carlo analysis to sample weather 
conditions for RA analysis, this approach also has significant drawbacks. First, 
it depends on a subjective process of binning historical data and/or deciding 
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how to capture important geographical and temporal correlations. These 
decisions and their implications are often opaque, can be difficult to vet, and 
may result in conditions that are not physically realistic. Generating conditions 
in this manner also makes it difficult to identify the specific coherent weather 
conditions that drive RA risk over very large areas. Finally, while Monte Carlo 
analysis can provide very precise estimates by sampling very large numbers 
of conditions, such precision does not ensure accuracy and may lead to 
overconfidence by decision makers. To address some of the shortcomings 
of Monte Carlo analysis, the GridPath RA Toolkit also provides an option to 
simulate the system across a synchronized weather record. In this Weather-
Synchronized Simulation mode, Monte Carlo is applied in a more limited fashion 
to simulate random thermal unit forced outages across all combinations of 
synchronized weather years and hydro years.

The GridPath RA Toolkit (Toolkit), 
which can be found at gridlab.
org/GridPathRAToolkit, consists 
of GridPath, accompanying code 
that generates the datasets for use 
with GridPath via Monte Carlo or 
Weather-Synchronized Simulation, 
and the data inputs and settings 
used throughout the study. This 
initiative included a significant 
effort to develop renewable energy 
datasets based on publicly available 
sources and the resulting hourly 
renewables shapes are being made publicly available. A primary intention of 
sharing the datasets as part of the GridPath RA Toolkit is that researchers and 
analysts need not duplicate this step and may instead devote analytical efforts 
to asking and analyzing the important resource adequacy questions. The 
Toolkit provides information regarding system requirements for running a full 
simulation. 

The GridPath RA Toolkit (Toolkit), 

which can be found at gridlab.org/

GridPathRAToolkit, consists of GridPath, 

accompanying code that generates 

the datasets for use with GridPath via 

Monte Carlo or Weather-Synchronized 

Simulation, and the data inputs and 

settings used throughout the study. 
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WESTERN US CASE STUDY

In this report, we describe an application of the GridPath RA Toolkit to near-
term (2026) resource adequacy challenges in the Western United States. We 
used this case study to test alternative approaches to RA modeling and to 
demonstrate how RA modeling might take into account regional coordination 
over a large and diverse footprint. The study area included all balancing area 
authority areas (BAAs) in the Western Interconnection, excluding those in 
Canada and Mexico. Transmission was represented by zonal constraints on 
flows between BAAs. We developed load and resource availability assumptions 
for each modeled BAA in 2026. The analysis reflected a physical model of 
the Western power grid and did not take into account resource ownership or 
contractual agreements for serving load. This means that the study results are 
broadly indicative of regional resource adequacy challenges, but cannot be 
used to attribute responsibility for shortages to individual load serving entities 
or RA programs.

FIGURE ES.1.

Western US Case Study 
zonal topology.
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WESTERN US DATASET

The availability of complete and transparent datasets for RA analysis can be 
an impediment to rigorous oversight. To further the state of RA modeling 
in the West, we provide a model-ready dataset for the Western US in the 
2026 study year as part of the GridPath RA Toolkit. This data was developed 
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from publicly available datasets and 
publicly available tools, including 
EIA Forms 860M1 and 923/906;2 
FERC Form 714;3 the WECC 2026 
Common Case;4 NREL’s National Solar 
Radiation Database (NSRDB),5 Wind 
Integration National Dataset Toolkit 
(WIND Toolkit)6 and System Advisor 
Model (SAM);7 BPA’s Total Load and 
Wind Generation Report;8 CAISO’s 
Daily Renewables Watch;9 and the 
NCEI Global Surface Summary of the 
Day.10 Some new tools were developed 
to efficiently collect this data and to 
generate the datasets required for 
power system analysis, including an 
empirical wind power curve estimator, 
a thermal derate estimator, and a 
tool for estimating hourly load in the 
study year based on historical data 
and economic forecasts.11 To improve 
computational performance, much 
of the data provided as part of the 
GridPath RA Toolkit is aggregated to 
the WECC BAA level. Additional data 

1  This study was based on the February 2021 EIA Form 860M, 
available at: https://www.eia.gov/electricity/data/eia860m/
archive/xls/february_generator2021.xlsx 
2  Available at: https://www.eia.gov/electricity/data/eia923 
3  This study utilized the 2006-2020 Form 714 database, 
available at: https://www.ferc.gov/sites/default/files/2021-06/
Form-714-csv-files-June-2021.zip 
4  Available at: https://www.wecc.org/SystemAdequacyPlanning/
Pages/Datasets.aspx 
5  Sengupta, M., Y. Xie, A. Lopez, A. Habte, G. Maclaurin, and J. 
Shelby. 2018. “The National Solar Radiation Data Base (NSRDB).” 
Renewable and Sustainable Energy Reviews 89 (June): 51-60.
6  Draxl, C., B.M. Hodge, A. Clifton, and J. McCaa. 2015. Overview 
and Meteorological Validation of the Wind Integration National 
Dataset Toolkit (Technical Report, NREL/TP-5000-61740). 
Golden, CO: National Renewable Energy Laboratory. Draxl, C., 
B.M. Hodge, A. Clifton, and J. McCaa. 2015. “The Wind Integration 
National Dataset (WIND) Toolkit.” Applied Energy 151: 355366. 
King, J., A. Clifton, and B.M. Hodge. 2014. Validation of Power 
Output for the WIND Toolkit (Technical Report, NREL/TP-
5D00-61714). Golden, CO: National Renewable Energy Laboratory.
7  PySAM Version 2.2.2. National Renewable Energy Laboratory. 
Golden, CO. https://github.com/nrel/pysam.
8  Available at: https://transmission.bpa.gov/business/
operations/wind/ (item 5)
9  Available at: http://www.caiso.com/market/Pages/
ReportsBulletins/RenewablesReporting.aspx 
10  Global Surface Summary of the Day - GSOD, National Centers 
for Environmental Information, NESDIS, NOAA, U.S. Department 
of Commerce, available at: https://www.ncei.noaa.gov/access/
search/data-search/global-summary-of-the-day 
11  The code for these new tools can be requested from the study 
team and shared under an open-source license, but it will not be 
maintained over time.
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used in the study and higher resolution datasets, including those listed in Table 
ES.1, can be obtained by contacting the study team.

TABLE ES.1.

Western US Case Study key data sources.

DATA YEARS SOURCES
GEOGRAPHICAL 
RESOLUTION

Resource Stack 2026 EIA Form 860M EIA Generator

Hourly Load 2006-2020 Historical load: FERC Form 714
Load zone topology: 2026 WECC Common 
Case

WECC BAA

Hourly Wind 2007-2014 Hourly wind speed: NREL WIND Toolkit,
Historical generation: EIA Form 923/906

EIA Plant

Hourly Solar 1998-2019 Hourly weather: NSRDB,
Technological specifications: NREL System 
Advisor Model, LBNL’s Utility-Scale Solar Data 
Update: 2020 Edition12 and EIA Form 860M

EIA Plant

Hourly Thermal 
Derates

1998-2019 Forced outage rates: 2026 WECC Common 
Case
Hourly temperature: NSRDB
Winter and summer capacities: EIA Form 860M

EIA Generator

Monthly Hydro 
Energy, Pmin, 
and Pmax

2001-2020 Historical generation: EIA Form 923/906,
Hourly data used to derive Pmin and Pmax: 
BPA Total Load and Wind Generation Report, 
CAISO Daily Renewables Watch, and WECC 
2026 WECC Common Case

WECC BAA

Transmission & 
Interfaces

2026 2026 WECC Common Case WECC BAA

Weather 
conditions

1949-2019 NCEI Global Surface Summary of the Day 16 sites across the West

Economic 
conditions

2006-2026 US Bureau of Economic Analysis,13

2021 EIA Annual Energy Outlook14

Western US

SCENARIO ANALYSIS

To better understand the nature of the near-term RA challenge in the West, 
we tested three scenarios using Monte Carlo Simulation: the No Additions 
Scenario, which reflects planned retirements and no planned resource 
additions; the California Additions Scenario, which layers on additional 
resources in CAISO based on the California Public Utility Commission’s (CPUC) 
Preferred System Plan; and the Less Coal Scenario, which incorporates the 
additional resources in California while also retiring about 11 GW of coal 
elsewhere in the West. All three scenarios were modeled as a physical system 

12  Bolinger, M., Seel, J., Robson, D., Warner, C., “Utility-Scale Solar Data Update: 2020 Edition,”Lawrence Berkeley National
Laboratory, November 2020. Available at:  https://emp.lbl.gov/publications/utility-scale-solar-data-update-2020 
13  Annual GDP by State, SAGDP tables,  available at: https://apps.bea.gov/regional/downloadzip.cfm 
14  U.S. Energy Information Administration, Annual Energy Outlook 2021. Macroeconomic Indicators table, available at: https://www.
eia.gov/outlooks/aeo/tables_side.php 
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that is unencumbered by institutional barriers to coordination and where short-
term operational decisions can be made optimally to avoid lost load.

West-wide Findings

High-level results for the three scenarios are presented in Table ES.2.15 We 
estimated that, without taking any action, the West could be physically short 
by approximately 8.8 to 9.9 GW in 2026 if planning to a traditional one-day-
in-10-year LOLE standard. However, the identified shortage was much smaller 
than the amount of capacity additions in current utility plans in the West. 
Procurement authorized in California would effectively eliminate this capacity 
shortfall. The 28 GW of capacity added in the California Additions Scenario 
resulted in only seven reliability events in 1,000 years of simulated conditions, 
well below the one-day-in-10-year standard and meeting all of the perfect 
capacity needs identified in the No Additions Scenario. The Less Coal Scenario 
did not achieve a one-day-in-10-year standard, but well outperformed the No 
Additions Scenario, indicating that the resource adequacy contribution of the 
added resources in California exceeded that of the 11 GW of additionally retired 
coal units. The remaining capacity need identified for the Less Coal Scenario 
was about 3.3 to 4.2 GW to meet the one-day-in-10-year standard.

TABLE ES.2.

Western US Case Study key scenario RA metrics.

METRIC
NO ADDITIONS 
SCENARIO

CA ADDITIONS 
SCENARIO

LESS COAL 
SCENARIO

LOLE (days/10yrs) 17.3 - 19.0 0.02 - 0.12 3.73 - 7.86

Perfect Capacity Need
LOLE = One day in 10 years

8.8 - 9.9 GW 0 GW 3.3 - 4.2 GW

In addition to the high-level reliability 
metrics above, GridPath provided 
detailed information on the nature of 
loss of load events encountered in the 
simulation. In the No Additions Scenario, 
loss of load events were identified only 
in the summer afternoon and evening 
hours. The highest probability of lost 
load was in the hour ending (HE) 18 (6-7 
pm in Pacific Daylight Time) in August. 
Only 7 percent of the identified events 
were longer than 4 hours and all were 

15  Ranges represent a 95% confidence interval.

Our analysis of the maximum 

shortages and total energy shortages 

of the loss-of-load events for the 

No Additions Scenario suggested 

that the economically optimal 

solution to meet the one-day-in-

10-year standard was unlikely to 

require beyond 4 hours of sustained 

duration, suggesting that battery 

storage may be well suited to 

alleviate near term RA challenges.
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less than 8 hours in duration. Our analysis of the maximum shortages and total 
energy shortages of the loss-of-load events for the No Additions Scenario 
suggested that the economically optimal solution to meet the one-day-in-10-
year standard was unlikely to require beyond 4 hours of sustained duration, 
suggesting that battery storage may be well suited to alleviate near term RA 
challenges. Relative to the No Additions Scenario, the Less Coal Scenario 
eliminated most loss of load events outside of August afternoons and evenings, 
and 91% of the remaining events were less than 4 hours in duration.

FIGURE ES.2. 

Loss of load hours per year in the (a) No Additions Scenario and (b) Less Coal Scenario.

 

 

Despite the retirement of almost 11 GW of coal resources, the Less Coal 
Scenario relied on the additional batteries to eliminate many of the capacity 
shortages from the No Additions Scenario. Resource availability on an example 
day from the two scenarios is shown in Figure ES.3. Panel (a) shows this day in 
the No Additions Scenario and panel (b) shows it for the Less Coal Scenario. 
On this day, storage charged early in the day and shifted the energy to the 
evening reducing the amount of unserved energy despite the reduced coal 
availability.
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FIGURE ES.3. 

Load and resource 
availability on example 
day in the  
(a) No Additions 
Scenario and  
(b) Less Coal Scenario.

  Unserved Energy

 Imports

 Storage
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Storage Charging
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 b

 a

Subregional Analysis 

In addition to simulating each scenario on a West-wide basis, we also tested 
the No Additions Scenario and the Less Coal Scenario over two subareas that 
approximate the CAISO and Western Resource Adequacy Program (WRAP) 
footprints.16 We tested these subareas with and without physically coherent 
import availability to understand how import policies may affect RA analysis 
findings. To examine the subareas, we first simulated each as a physical island 
with no import capabilities. We then compared the islanded simulation to the 
West-wide simulation to understand whether any lost load in the islanded 
simulation could be avoided by accounting for the rest of the West. In the No 
Additions Scenario, simulating CAISO as an island resulted in a high probability 
of lost load and a capacity need of 11.2 GW. Allowing for imports reduced the 
identified capacity need in the CAISO footprint to 8.2 GW, highlighting the 
significance of imports to CAISO’s RA position.

16  Note that the subareas do not exactly align with real resource adequacy programs because they consider loads and resources 
that are associated with each balancing area within a physical model of the West, rather than allocating resources to load serving 
entities (LSEs) based on ownership and contractual information.
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We also found that import assumptions were 
a major driver of the identified needs for the 
WRAP subarea in the Less Coal Scenario, in 
which all of the coal in the WRAP footprint 
was retired. When WRAP was treated as 
an island in this scenario, shortages were 
observed in all months, except March and 
April, and were long in duration in both 
the summer and winter (See Figure ES.4). 
Accounting for imports alleviated most 
shortages in the WRAP subarea, with the 
remaining shortages limited to summer 
evenings, and similar in timing and duration 
to those identified in the West-wide analysis 
of the Less Coal Scenario.

FIGURE ES.4.

Loss of load hours per year for the WRAP subarea in the Less Coal Scenario when (a) the subarea is 
modeled as an island and (b) the subarea has access to imports.

 
 a  b

Due to the highly interconnected nature of the West, we find that resource 
adequacy analysis that treats subareas or RA programs as islands can distort 
the observed RA challenges and may lead to suboptimal RA solutions, 
including potentially significant overbuild and employing solutions that are not 
well suited to the nature of the RA challenge.

Due to the highly interconnected 

nature of the West, we find that 

resource adequacy analysis that 

treats subareas or RA programs 

as islands can distort the 

observed RA challenges and may 

lead to suboptimal RA solutions, 

including potentially significant 

overbuild and employing 

solutions that are not well suited 

to the nature of the RA challenge.

ADVANCING RESOURCE ADEQUACY ANALYSIS WITH THE GRIDPATH RA TOOLKIT   |  13



WEATHER-SYNCHRONIZED SIMULATION INSIGHTS

We further explored the No Additions Scenario using Weather-Synchronized 
Simulation to better understand the limitations of Monte Carlo-based 
approaches to characterizing weather conditions in RA analysis. Weather-
Synchronized Simulation tests fewer potential weather variations than 
Monte Carlo analysis, but it provides confidence that the findings reflect 
actual physical weather phenomena and all relevant spatial and temporal 
correlations. The Weather-Synchronized approach requires several years 
of time-synchronized load, wind, solar, and thermal derate data in order to 
be meaningful. Fully synchronized historical hourly load, wind, solar, and 
temperature data was available for the period 2007-2014, with load data also 
available through 2020, and solar and temperature data available through 2019. 
We developed synthesized wind, solar, and thermal derate hourly data for the 
respective missing years to lengthen the synchronized period to 2007-2020. 
We tested the full synchronized record across each available hydro year (2001-
2020) and across 30 forced outage iterations, resulting in a total of 8,400  
years of potential conditions.

Comparison to Monte Carlo Simulation Results

Using Weather-Synchronized Simulation to examine the No Additions Scenario 
resulted in higher loss of load expectation than Monte Carlo Simulation as well 
as larger shortages and slightly longer event durations, although all events 
were still 8 hours or less with similar timing in the summer evenings. Perfect 
capacity needs were about 1.8 GW higher in the Weather-Synchronized 
Simulation relative to the Monte Carlo Simulation. Notably, if we limited the 
analysis to the 8 years without synthesized data (2007-2014), the loss of load 
expectation and capacity needs were much lower because of the relatively 
high frequency of loss of load events in recent weather years. This finding 
highlights the sensitivity of RA analysis to the specific years of weather 
conditions that are included and underscores the importance of continued 
efforts to expand publicly available datasets like NREL’s Wind ToolKit to recent 
weather years.
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TABLE ES.3.

Key RA metrics in the No Additions Scenario using Weather-Synchronized Simulation.

METRIC

NO ADDITIONS 
SCENARIO

(WEATHER-
SYNCHRONIZED 
2007-2020)

NO ADDITIONS 
SCENARIO

(WEATHER-
SYNCHRONIZED 
2007-2014)

NO ADDITIONS 
SCENARIO

(MONTE CARLO)

LOLE (days/10yrs) 24.6 - 25.3 10.7 - 11.3 17.3 - 19.0

LOLE = One day in 10 years 10.9 - 11.4 GW 6.3 - 6.6 GW 8.8 - 9.9 GW

Weather Insights

Weather-Synchronized Simulation allows for the identification of the specific 
weather conditions across the West that pose the greatest risk to resource 
adequacy in the 2026 timeframe. At a high level, we find that temperature 
remains the key weather driver of loss of load risk in this system. Notably, the 
days with non-zero loss of load probability see abnormally high temperatures 
across coastal load centers in California and the days with the greatest loss 
of load probability also see abnormally high temperatures across most of the 
West. The events in August 2020 serve as an example of the most challenging 
type of weather phenomenon for near-term RA in the Western United States. 
The August 2020 heat event was uncharacteristically hot across most of the 
West and the coincidence of unusually hot conditions at most load centers 
across the West resulted in very high loss of load risk in the simulation. This 
event was driven by a weather phenomenon known as the West Coast Thermal 
Trough, a self-reinforcing cycle that pushes 
air from the desert southwest northward 
between the Sierra/Cascades and the coast, 
which can bring coincident well-above-
average temperatures to California and 
Western Oregon/Washington.17 The weather 
conditions on two of the most challenging 
days during this event are shown in Figure 
ES.5.18

17  Brewer, Matthew & Mass, Clifford & Potter, Brian. (2013). The West Coast Thermal Trough: Mesoscale Evolution and Sensitivity to 
Terrain and Surface Fluxes. Monthly Weather Review. 141. 2869-2896. 10.1175/MWR-D-12-00305.1.
18  All weather maps in this report were created with data from the NOAA High-Resolution Rapid Refresh (HRRR) analysis dataset, 
accessed via the HRRR Data Archive: AWS Open Data Program (https://mesowest.utah.edu/html/hrrr/)
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FIGURE ES.5. 

Regional weather on days during the August 2020 heat wave with 100% LOLP in the  
No Additions Scenario.
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Days with more geographically isolated heat, which may result in very high 
load conditions in localized parts of the West, did not tend to pose loss of load 
risk in the modeled system due to geographical diversity. Three examples are 
shown in Figure ES.6. June 12th, 2019 was unusually hot in Portland and parts 
of California and the Southwest, but was relatively mild along coastal California 
load centers. July 16th, 2018 was unusually hot in Seattle, Portland, and areas 
East of the Cascades and Sierras, but was less extreme along the California 
coast and the Southwest. And July 13th, 2020 saw extreme heat in the Desert 
Southwest, but relatively mild conditions across the Northwest. Despite 
extreme heat in parts of the West on each of these days, none of them saw loss 
of load risk in the Weather-Synchronized Simulation thanks to geographical 
load diversity.
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FIGURE ES.6. 

Regional weather on days with localized heat but no simulated loss of load risk in the No Additions 

Scenario.
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STATISTICAL ANALYSIS

Using the results from the Weather-Synchronized Simulation mode, we 
developed a statistical model based on logistic regression to estimate the 
probability of lost load as a function of daily weather conditions on each 
simulated day as well as several other parameters including the daylight hours, 
whether the day was weekday or weekend, and the West-wide hydro budget 
for the corresponding week. This statistical model can 1) provide important 
information about the drivers of RA challenges and 2) estimate the risk of 
loss of load events during times and weather conditions that were not directly 
simulated, both historical weather conditions and potentially under future 
climate scenarios. We note that because so few weather conditions result in RA 
risk, we relied on ensemble methods, random out-of-sample testing, and other 
measures to avoid overfitting.

Our analysis confirmed that temperature is the key driver of loss of load risk 
while higher wind speeds in key locations such as Wyoming and Montana may 
correlate with lower risk. Our final statistical model included temperature and 
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wind speed as the two weather variables; other weather variables such as 
dew point and pressure did not meaningfully improve the performance of the 
model. 

We applied the logistic regression model to historical weather conditions for 
which the high resolution hourly data required for power system modeling was 
not available. As an example, we used the logistic regression model to estimate 
loss of load risk during the historic heat dome event in June 2021, which broke 
several high temperature records across the Northwest (116°F in Portland and 
108°F in Seattle). Despite the historic heat in parts of the West on June 28, 
2021 (see Figure ES.7), we estimated a loss of load probably of only 1.2% on 
this day because other parts of the West saw much milder conditions.

MAX. DAILY TEMPERATURE

Source: NOAA High-Resolution 
Rapid Refresh analysis dataset
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FIGURE ES.7.

Regional temperatures during the 
June 2021 heat dome event.

We also applied the logistic regression model to daily weather conditions 
going back to 1949 to investigate the loss of load risk across a longer historical 
record of weather conditions. Figure ES.8 shows the results of this analysis 
averaged across the hydro years. We found that weather patterns that drive 
the RA risk identified in the No Additions portfolio have increased in frequency 
since the 1990s. This trend has important implications for RA analysis more 
generally as historical weather data is often used to approximate future 
weather distributions.
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FIGURE ES.8.

Statistical estimation of LOLE across historical weather conditions.
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To explore the implications of this 
finding, we applied the statistical 
model across various historical weather 
records. We found that LOLE estimates 
trend lower as more distant historical 
years are used—and assumed equally 
likely—in the analysis. We note that 
without information about future 
weather and how it may compare to 
the historical data, decisions regarding 
the number of historical weather years 
to consider and/or the application 
of detrending methods to historical weather are effectively policy decisions 
based on risk tolerance. The development and use of future weather data, for 
example using climate simulations and downscaling, would greatly improve 
our understanding of the RA challenges future energy systems might face, and 
how to address those challenges.

CONCLUSIONS AND NEXT STEPS

The Western US Case Study described in this report yields some key insights 
regarding the state of resource adequacy in the West and the relative strengths 
and weaknesses of RA methodologies, especially in the context of a changing 
climate.
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INSIGHTS REGARDING THE WESTERN US CASE STUDY

• Without any incremental resource additions, the Western United States 
power system could face a resource adequacy shortage in 2026. However, 
current California procurement plans include sufficient new capacity to 
eliminate this shortfall.

Without deploying new resources through 2026, we estimate that the 
West could be physically short by about 8.8 to 9.9 GW in 2026, if planning 
to a one-day-in-10-year LOLE standard. This shortage is much smaller 
than the amount of capacity additions in current utility plans in the West, 
including the procurement ordered California Public Utility Commission 
(CPUC) Decision D.21-06-035, which requires 11.5 GW of new net qualifying 
capacity through 2026. Incorporating capacity additions consistent with 
California’s Preferred System Plan through 2026 eliminates all but seven 
RA events in 1,000 years of simulated dispatch.

• Additional coal retirements do not 
seem to pose an insurmountable 
RA challenge in the near term.

The deployment of additional 
batteries and renewable resources 
in California appears to mitigate 
much of the needs associated 
with retiring a large portion of the 
West-wide coal fleet, even before 
considering capacity additions 
from utility plans in the rest of the 
West. We estimate perfect capacity 
needs of about 3.8 GW for this case and find that short-duration solutions 
are likely adequate as the majority of RA shortages were 4 hours or less 
and occured in the evenings on hot summer days. Energy-limited resources 
such as batteries or demand flexibility are well suited to this type of 
shortage. The system does not appear to be energy-limited, with plentiful 
resources available to charge storage outside of the high-risk hours and 
shift the needed energy to avoid shortages in the afternoon and evening.

• Failure to account for regional dynamics can result in overbuild and a 
misunderstanding of the nature of the resource adequacy challenge.

Due to the highly interconnected nature of the West, resource adequacy 
analysis that treats a particular RA planning footprint as an island can 
distort the observed RA challenges and may lead to suboptimal RA 
solutions, including potentially significant overbuild. Even without 
full West-wide planning coordination, RA programs may benefit from 
adopting market access policies that are informed by West-wide analysis 
in order to properly account for interregional operational interactions.

Due to the highly interconnected 
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METHODOLOGICAL DEVELOPMENTS AND INSIGHTS  

• The Weather-Synchronized Simulation approach to RA analysis has 
a number of benefits over Monte Carlo Simulation. However, data 
availability remains a key limitation.

The Weather-Synchronized Simulation approach developed for this report 
can provide a transparent analysis of resource adequacy challenges 
and metrics and reveal how weather and weather trends impact those 
metrics. Unlike Monte Carlo Simulation that mixes and matches load, 
wind, and solar conditions that may be unrealistic, physically inconsistent, 
and internally inconsistent in terms of relative likelihood, the Weather-
Synchronized approach tests historically coherent weather conditions. It 
can therefore provide a much more transparent assessment of the drivers 
of RA risk and, importantly, statistical models derived from the results of 
Weather-Synchronized Simulations can be directly applied to test future 
weather conditions derived from climate modeling. The availability of 
more historical data, in particular, hourly wind datasets, would improve the 
performance of those statistical models.

• Weather is the most important driver of RA challenges and the treatment 
of weather trends is a key determinant of RA risk level.

A key finding of this study is that weather conditions continue to be 
the most important factor influencing the magnitude of RA challenges 
in the West in the near term. Simulating forced outage conditions and 
testing multiple hydro years is important to reduce the uncertainty in that 
estimate. Our analysis found that the treatment of weather trends is a key 
factor affecting the magnitude of the RA challenge. Without information 
about future weather from climate simulations, the choice of how to take 
weather trends into account is a policy decision. However, any analysis that 
assumes that historical weather is reflective of future weather patterns is 
likely flawed.

• The availability of more high-resolution historical power system data as 
well as information about likely future weather conditions would greatly 
improve our understanding of the RA challenge.

Regardless of the RA analysis approach, the availability of more historical 
data on load, wind, and solar output would improve the accuracy of 
the analysis. In particular, the lack of hourly wind data at hub height for 
recent historical years (after 2014) is a key limiting factor for capturing 
the weather-driven correlations of these variables with a higher level of 
confidence. Generating more wind data is a high priority. Since weather is 
a key determinant of RA risk, and recent weather trends pose questions 
about the validity of relying on the historical record for assessing future 
RA risk, the availability of data for future weather can improve our 
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understanding of how to plan for 
reliable future energy systems.

NEXT STEPS AND FUTURE WORK

• While the GridPath RA Toolkit  
provides a useful foundation for 
RA studies, climate sensitivities, 
electrification scenarios, and LSE 
or RA program modeling are key 
priorities for future RA analysis.

As part of the GridPath RA Toolkit, 
we developed a methodological 
framework for RA modeling and 
a foundational RA dataset. We also identified several critical areas 
for future analysis. First, we highlight the importance of developing 
a deeper understanding of how weather patterns may change in the 
future, impacting loss-of-load risk. Second, in this study we focus on the 
near-term RA challenge, but longer term planning would require a more 
sophisticated treatment of the weather-sensitivity of loads in the context 
of increasing electrification. Third, layering ownership and contractual 
information onto the physical system dataset used in this study would 
make it possible to conduct LSE- or RA-program-specific analysis that is 
fully consistent with the broader regional dynamics in the West. Finally, 
a core purpose of this initiative was to develop an advanced, publicly 
available and transparent toolkit for resource adequacy analysis; our hope 
is that a broad set of users will leverage the GridPath RA Toolkit to further 
advance resource adequacy analysis for emerging power systems. 

Finally, a core purpose of this 

initiative was to develop an 

advanced, publicly available and 

transparent toolkit for resource 

adequacy analysis; our hope is that 

a broad set of users will leverage 

the GridPath RA Toolkit to further 

advance resource adequacy 

analysis for emerging power 

systems. 

ADVANCING RESOURCE ADEQUACY ANALYSIS WITH THE GRIDPATH RA TOOLKIT   |  22



1

INTRODUCTION



Recent years have seen a renewed focus on Resource Adequacy (RA) in the 
Western United States (“the West”), as aging coal plants begin to retire, and 
new technologies and policies are quickly changing the composition of the 
Western grid. Clean technologies are increasingly cost competitive, but also 
create new technical challenges for grid planners and operators tasked with 
maintaining system reliability. Amidst these changes, the West has also seen 
extreme weather in recent years, leading to both unusually high demand 
for electricity and exacerbation of risks to grid infrastructure. In response to 
recent challenges on the grid and in anticipation of continued change, multiple 
efforts across the region are being undertaken to ensure resource adequacy. In 
California, the California Public Utility Commission (CPUC) has authorized the 
procurement of 11.5 GW of new resources to address mid-term reliability needs 
arising from more extreme weather and the closing of the Diablo nuclear power 
plant.19 Outside of CAISO, the Western Power Pool has convened a group of 
its members to design a resource adequacy program (the Western Resource 
Adequacy Program) that would allow participants to leverage diversity benefits 
of their loads and resources to meet resource adequacy objectives and to 
identify when regional resource adequacy challenges are afoot.20

The efforts that are underway to address resource adequacy in the West 
are critically important to maintaining reliability and continuing to transform 
the composition of the electric power sector, and their success will rely on 
sound RA analysis. Current approaches to RA analysis face many challenges, 
notably substantial data requirements, lack of transparency, and the potential 
for analytical inconsistency across the West, challenges which will grow as 
the complexities of the power sector—and the models used to simulate the 
power sector evolve. Modern RA approaches must grapple with the impact of 
weather on both demand and resource availability, the increasing reliance on 
energy-limited resources such as batteries, and the need to account for the 
ability of regional coordination to promote reliability through load and resource 
diversity in a highly interconnected system. At the same time, they must offer 
transparency into the methodologies, assumptions, and data used to allow for 
meaningful vetting by regulatory agencies and other oversight bodies. The 
Western United States, with a rapidly expanding fleet of variable renewables, a 
historical reliance on hydropower and a growing role for battery storage, and 
state clean energy policies that aim to continue to accelerate these trends, 
provides an instructive case study for modernized RA analysis. 

The report describes a near term analysis of RA in the Western US using a 
new public tool for modern RA analysis—the GridPath RA Toolkit. Section 2 
describes the data and methodologies employed by the Toolkit at a high level. 
Additional information can be found in the Technical Appendices. The Toolkit 
leverages GridPath, an open-source platform for power system planning and 

19  CPUC Decision 21-06-035 in Rulemaking 20-05-003, 6/30/2021. Available at: https://docs.cpuc.ca.gov/PublishedDocs/
Published/G000/M389/K603/389603637.PDF 
20  More information can be found at: https://www.westernpowerpool.org/about/programs/western-resource-adequacy-program 
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optimization, and also includes the datasets and accompanying code required 
to run GridPath as an RA tool. In addition to promoting transparency, using an 
open-source tool in this application allows for continued development of model 
capabilities and customization to specific systems over time by the study team 
and by other organizations—as the nature of the resource adequacy challenge 
and the assumptions and simplifications necessary to assess resource 
adequacy are system-dependent and will change over time. In the initial phase 
of this work and the Western US case study described in this report, we focus 
on the following aspects of modern RA analysis:

•  Weather-driven relationships between loads and resource 
availability across the entire region. 

Weather has always been a major driver of resource adequacy 
due largely to thermally driven electric loads, like air 
conditioning and electric heating, which tend to peak during the 
most extreme weather conditions. In systems with significant 
amounts of variable renewables, the weather is also a significant 
driver of resource availability.21 In these systems, we are not only 
interested in understanding the hottest or the coldest days, but 
also days in which the weather conditions result in high loads 
and low resource availability. Probabilistic analysis for these 
systems requires not only an understanding of the distributions 
of the weather conditions that drive demand and resource 
availability (especially the tails of those distributions), but also 
the correlations between them. 

It can be challenging to appropriately account for these 
correlations even in systems with relatively limited geographic 
scope and a relatively straightforward relationship between 
weather and demand. However, it is even more challenging to 
account for all relevant correlations across a system as large as 
Western United States, where the weather experienced in one 
corner of the system may differ considerably from another and 
where the weather-sensitive electricity infrastructure, whether it be 
wind farms or baseboard heaters, varies widely across the region. 
It is not straightforward to identify the weather conditions that 
will pose the greatest challenges for resource adequacy in such a 
system nor is it straightforward to estimate their probabilities, but 
that is the central challenge of modern resource adequacy analyses.

21  Weather conditions can also affect the reliability of traditional thermal generation, a risk that was highlighted during the 
widespread outages in ERCOT in February of 2021. This study does not explore the specific failure modes that caused the outages 
in ERCOT, but we do address temperature-driven thermal derates and we note that weather-driven forced outage rates may be 
important for systems with a high reliance on thermal resources that are vulnerable to extreme weather.
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•  Capabilities and constraints associated with dispatchable 
energy limited resources.

Hydropower and energy storage can make significant 
contributions to resource adequacy if their operations are 
optimized to account for load and the availability of renewables, 
and to prioritize avoiding lost load when the system is 
constrained. However, their contributions can also be limited due 
to energy constraints and losses. This study seeks to account 
for the dynamic capabilities of these resources in a manner 
that respects their key operating limitations. We employ a 
chronological dispatch approach to model not only the capacity 
adequacy of the system but its energy adequacy as well. This 
approach allows us to investigate the nature of potential RA 
events, including the magnitude and duration of shortages 
and the contributions of energy-limited solutions during these 
events. Note that changes to operational rules and incentive 
design may be required to ensure that these resources are best 
utilized to contribute to resource adequacy.

• Transmission and regional coordination.

While much of the Western United States operates outside of 
a fully organized market, balancing areas across the West are 
highly interconnected and highly dependent on one another. 
During normal operations, entities regularly trade power 
across the West through bilateral agreements and, for some, 
the Western Energy Imbalance Market. During contingency 
events, like a sudden trip of a large generator, the stability of 
the grid is maintained by relying on generators in other parts 
of the region through formal pooling agreements, like the one 
managed by the Western Power Pool. And when an entity 
faces a potential energy and/or capacity emergency, a regional 
Reliability Coordinator notifies all market participants through 
the declaration of Energy Emergency Alerts, which can initiate 
additional short-term bilateral transactions to avoid load 
curtailments. In these ways, even though the West does not have 
a fully organized market, regional coordination is already critical 
to maintaining a reliable system.

The extent to which resource adequacy analyses and planning 
studies acknowledge this interdependence across the West 
varies widely. Some entities attempt to estimate their reliance 
on the broader market during constrained conditions to avoid 
overbuilding resources, while others take a more conservative 
approach to ensure that their systems are adequate without 
reliance on the market. Because these assumptions are often 
driven by utility-specific considerations and subject to state 
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regulatory processes, there is no guarantee that they are 
internally consistent—that the same entities aren’t assuming 
access to the same generation at the same time or that all 
available generation is being utilized where it’s needed. This 
situation leads to inefficiencies and overbuild at best and 
reliability issues at worst.

This study provides an internally consistent analysis of the 
Western US to provide a holistic view of regional challenges 
and to inform more focused studies of individual utilities or RA 
programs. The study shows how transmission can be leveraged 
to mitigate regional resource adequacy challenges and how 
resource adequacy planners might take this into account when 
focusing on a particular part of the region with or without formal 
planning coordination.

To test the capabilities of the system across a wide range of system conditions, 
the GridPath RA Toolkit offers two simulation options: Monte Carlo Simulation 
or Weather-Synchronized Simulation. Monte Carlo Simulation allows the 
user to test more possible combinations of conditions, but may not preserve 
all relevant correlations and may not reflect physically realistic situations. 
Weather-Synchronized Simulation ensures that weather conditions are realistic 
and reflect all relevant correlations, but typically limits the number of weather 
conditions that can be tested due to limited data availability. In this report, we 
explore both methodologies. 

In Section 3, we use Monte Carlo Simulation to explore investigate multiple 
scenarios for the Western US in 2026: a No Additions Scenario representing 
the system if no action is taken; a CPUC Additions Scenario that includes 
procurement of new resources recently authorized in California; and a Less Coal 
scenario that includes those capacity additions but also retires a portion of the 
coal fleet in the rest of the West. In this part of the report, we seek to understand 
the nature of near term reliability challenges, their magnitude, timing, and 
duration as well as regional interactions when the system is highly constrained.

Section 4 of this report further explores the No Additions Scenario using 
Weather-Synchronized Simulation to better understand RA challenges based 
on historical weather conditions. In this section, we describe the historical 
weather events that pose the greatest RA risk and we present a novel 
statistical analysis relating key weather variables to loss of load probability and 
demonstrate how such analyses can be used to examine historical weather 
trends and associated RA risk.

Finally, in Section 5, we summarize key findings and offer recommendations for 
future work using the GridPath RA Toolkit or other RA modeling tools.
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2 

METHODS, 
DATA, AND 
METRICS



RA analyses typically consist 
of two primary components: 
an analysis of the relevant 
conditions that could pose RA 
challenges and an evaluation of 
the capabilities of the system 
during those conditions to 
avoid lost load. Depending on 
the system, approaches can 
range from highly simplified 
methods, like a traditional 
planning reserve margin (PRM) 
calculation, to highly complex 
and computationally challenging simulations. The complexities of the Western 
grid and modern power systems necessitate a rigorous approach that can 
account for complex weather patterns over large areas and operational 
decision-making that considers loads and resources over that entire area 
and across time. The GridPath RA Toolkit offers two options for modeling 
system conditions to address these complexities (Monte Carlo Simulation and 
Weather-Synchronized Simulation) and it leverages the dispatch optimization 
capabilities of GridPath to estimate system operational capabilities under those 
conditions. These tools require detailed information about loads, resources, 
and transmission on the system and multiple years of high resolution data. 
In this section, we describe: the methods that can be used to characterize 
a wide range of potential system conditions using the GridPath RA Toolkit; 
the constraints and objective function used in GridPath to simulate system 
capabilities under constrained conditions in this study; and the assumptions 
and methodologies used to transform public data into a usable format for RA 
analysis. More detailed information, including benchmarking analyses for the 
resource availability estimates, can be found in Appendix A.

2.1 MODELING SYSTEM CONDITIONS

There are three primary sources of resource adequacy risk addressed in this 
study: weather risk, hydro risk, and forced outage risk. Accounting for these 
risks, in particular weather risk, is inherently challenging because there is 
limited historical data with the necessary spatial and temporal granularity 
to simulate grid operations and because the weather conditions that drive 
resource adequacy challenges tend to be rare. The GridPath RA Toolkit offers 
two options for modeling system conditions to address these risks, both of 
which are described in this section: Monte Carlo Simulation and Weather-
Synchronized Simulation.

The GridPath RA Toolkit offers two options 

for modeling system conditions to address 

these complexities (Monte Carlo Simulation 

and Weather-Synchronized Simulation) 

and it leverages the dispatch optimization 

capabilities of GridPath to estimate system 

operational capabilities under those 

conditions.
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2.1.1 MONTE CARLO SIMULATION

As with many modern resource adequacy analyses, this study primarily relies 
on Monte Carlo Simulation to get around the fundamental issue of historical 
data availability. Figure 2.1 shows the data coverage for the timeseries data 
used to characterize weather and hydro risks in this study. While several 
years of hourly load, temperature, and solar data are publicly available from 
FERC and the National Renewable Energy Laboratory’s (NREL) National Solar 
Radiation Database (NSRDB), hourly wind data at wind turbine hub heights 
is limited to the NREL Wind Integration National Dataset Toolkit (WIND 
ToolKit), which is available for 2007-2014. This severely limits the number of 
weather conditions that can be tested without using Monte Carlo Simulation, 
and importantly, it excludes the most recent years, which have seen extreme 
weather events.
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FIGURE 2.1.

Historical data 
availability.

When coherent data is limited in this manner, Monte Carlo Simulation, applied 
carefully, can be used to synthesize many years of random, but plausible, 
conditions using historical data. Figure 2.2 shows how RA analysis is conducted 
with the GridPath RA Toolkit in Monte Carlo Simulation mode.
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mode

To represent each year, the 
Monte Carlo Simulation first 
randomly selects the hydro 
conditions for the year and 
then loops through the 
days of the year, randomly 
selecting weather-driven 
hourly load, wind, solar, and 
thermal shapes. To account 
for correlations between these 
variables due to weather, 
the model relies on daily 
weather binning. Days with similar weather conditions across the West are 
grouped together into bins22 and the model uses a Markov Chain approach to 
randomly walk between weather bins based on historically-observed weather 
day transitions between 1991 and 2020. More information about the binning 
methodology can be found in Appendix B. After the weather bin is selected for 
each day, hourly load, wind, solar, and thermal shapes are randomly selected 
from within the bin. Mixing and matching these shapes from within the same 
weather bin allows the Monte Carlo method to synthesize many more potential 
system conditions than were actually recorded over the historical period from 
which the conditions are drawn. This approach captures some, but not all 
correlations between the variables—the weather binning attempts to group 
days in a manner that captures correlations, but any correlations between 
variables within each bin are neglected. Smaller bins tend to do a better job of 
capturing correlations, because the days are more similar to one another, but 
this reduces the number of potential combinations that can be investigated. 

22  The bins also differentiate between months and load shape binning also takes into account weekends versus weekdays.

The GridPath RA Toolkit offers two options 

for modeling system conditions to address 

these complexities (Monte Carlo Simulation 

and Weather-Synchronized Simulation) and it 

leverages the dispatch optimization capabilities 

of GridPath to estimate system operational 

capabilities under those conditions.
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This is the key tradeoff for using 
Monte Carlo Simulation to generate 
weather conditions in RA analysis—
the more weather conditions that 
Monte Carlo Simulation allows you to 
test (i.e., the greater the precision), 
the less confidence you have that the 
important correlations are preserved 
(i.e., the lower the accuracy).

To preserve geographical correlations 
within each variable, daily shapes of 
each type are selected on the same 
day over the entire geographical footprint. For example, to synthesize a very 
hot August day, the Monte Carlo Simulation could randomly select August 
30th, 2017 for solar and August 9th, 2012 for wind—two days with relatively 
similar weather conditions across the West. In this case, the Monte Carlo 
Simulation combines the solar shapes experienced across the entire West on 
August 30th, 2017 with the wind shapes experienced across the entire West on 
August 9th, 2012.

The Monte Carlo Simulation also randomly generates forced outages on a 
unit-specific basis for each hour using exponential failure and repair models. 
For this study, unit forced outages were independent and not weather-driven, 
however this capability could be developed for future studies.

The primary benefit of a Monte Carlo Simulation is the very large number of 
conditions that can be investigated, which can result in highly precise estimates 
of RA metrics. However, their accuracy can be questionable because the 
synthesized conditions may not be physically realistic due to the complexities 
of weather systems and their impacts on load and resource availability. As 
a result, Monte Carlo approaches may yield false precision and result in 
overconfidence by decision makers. 

2.1.2 WEATHER-SYNCHRONIZED SIMULATION

As an alternative to Monte Carlo Simulation, the GridPath RA Toolkit includes 
an option to generate conditions using Weather-Synchronized Simulation, 
which considers only conditions that have been experienced in the historical 
record or that could be experienced coincidently across the study footprint 
based on high resolution weather simulation.23 In this approach (see Figure 
2.3), Monte Carlo analysis is only applied to simulate forced outages and not to 
generate plausible weather-driven variables. To capture hydro risk, each of the 
hydro years is tested across all of the synchronized weather years.

23  For this study, we rely on historical weather conditions, but we note that a similar approach could be used with the results of 
numerical weather modeling of alternative or potential future conditions.

As an alternative to Monte Carlo 

Simulation, the GridPath RA Toolkit 

includes an option to generate conditions 

using Weather-Synchronized Simulation, 

which considers only conditions that have 

been experienced in the historical record 
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across the study footprint based on high 

resolution weather simulation.
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 Weather-Synchronized Simulation offers three primary benefits 
over Monte Carlo Simulation for characterizing weather-
dependence:

1.  It provides confidence that the conditions being modeled in 
the dispatch simulation reflect physically feasible weather 
conditions with all relevant temporal and geographical 
correlations over the study area, and preserves the relative 
frequency of different weather conditions;

2.  It provides more transparency into the derivation of resource 
adequacy metrics; and

3.  It allows for a relatively simple and transparent analysis 
into how weather and weather trends may impact resource 
adequacy.

The key disadvantage of this methodology is that publicly available coherent 
load, wind, thermal, and solar data with the granularity necessary to simulate 
operations across the Western grid is limited. Specifically, because the NREL 
Wind Toolkit data only spans 2007-2014, there are only 8 years of synchronized 
weather conditions available to test using public data, and the most recent 
years, which have experienced extreme weather events, cannot be tested. 
For the purposes of demonstrating the Weather-Synchronized Simulation 
approach, we chose to synthesize thermal, wind, and solar data using day 
matching to expand the coherent weather record to 2007-2020. More 
information about this approach can be found in Appendix C. 
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data used in Weather-
Synchronized Simulation 
mode.

For a near term study, synthesizing hourly wind, thermal, and solar data for 
some conditions may be reasonable, as load remains the primary driver of 
near term RA challenges and load data is available through 2020. However, 
for systems with a greater reliance on renewable resources, this approach may 
not be valid. We address this limitation 
in Section 4 and find that expansion 
of publicly available wind datasets in 
particular will be crucial for more robust 
RA modeling going forward. 

2.2 DISPATCH MODELING

To test the capabilities of the system 
across a wide range of chronological 
conditions and to identify the conditions 
under which the system cannot reliably 
meet demand, the Toolkit leverages 
optimization-based dispatch modeling 
using GridPath, an open-source, versatile 
platform for power system planning and 
optimization. This approach accounts for 
the dynamic capabilities and limitations of 
energy-limited resources, like hydropower, 
energy storage, and hybrid renewable + 
storage systems, as well as the benefits of 
the transmission system.
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For the purposes of this study, we vastly simplify the dispatch problem within 
GridPath to prioritize avoiding lost load and to ensure relatively short runtimes. 
However, GridPath is highly flexible and can be used to layer additional 
complexities onto the dispatch problem, including resource economics and 
flexibility constraints, although this could increase computational resource 
requirements. For this study, GridPath is used to perform weekly optimizations 
of a zonal system with an hourly resolution over the set of generated system 
conditions. Each week is optimized independently and the model has perfect 
foresight for the whole week. This chronological dispatch approach allows 
us to capture the characteristics and capabilities of energy-limited resources 
such as energy storage and hydropower. The objective function used in this 
study minimizes total unserved energy over the week plus the largest hourly 
capacity shortage experienced during the week, thus taking into account both 
the energy and capacity components of resource adequacy. The dispatch of all 
resources is co-optimized in order to account for interactions between them, 
for example, between solar and storage.

Transmission is represented by constraining flows across branches that 
connect BAAs using a simple transport model and enforcing path limits across 
collections of branches. The objective function also includes a small penalty 
term on exports that ensures that each load zone prioritizes meeting its own 
load first. 

In addition to meeting load, the model enforced contingency reserve 
obligations, which can be met by a subset of the modeled resources. Each 
modeled resource is also subject to various operational constraints, which are 
summarized in Table 2.1 and described in more detail in Appendix A.
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TABLE 2.1.

Resource dispatch treatment.

RESOURCE TYPE DISPATCH CONSIDERATIONS

Thermal Generators • Always committed if available

• Able to provide contingency reserves

• Aggregated by technology and zone in optimization

Hydropower • Output optimized to minimize unserved energy, subject to weekly 
hydro budget and corresponding min and max constraints

• Able to provide contingency reserves

• Aggregated (across dispatchable, run-of-river, and pumped storage) by 
zone in optimization

Wind Power • Fixed shape

• Aggregated by zone in optimization

Solar Power • Fixed shape

• Aggregated by zone in optimization

Battery Storage • Charging and discharging optimized to minimize unserved energy, 
subject to battery constraints

• Able to provide contingency reserves

• Aggregated by zone in optimization

Hybrid Renewables • Output optimized to minimize unserved energy, subject to renewable 
availability, battery constraints, and interconnection limits

• Not aggregated in optimization (i.e., each hybrid project is explicitly 
optimized)

The GridPath RA Toolkit does not currently incorporate resource economics 
into the model formulation, however this could be explored in future work. 
The implicit assumptions behind neglecting economics are that resources will 
be committed in advance if they are available when operators see forecasted 
extreme weather conditions and that during emergency conditions, market and 
bilateral channels exist to ensure that all necessary transactions will occur and 
all available resources will contribute.

In this study, flexibility-related constraints and considerations such as ramp 
rates, minimum up and down times, and forecast errors are also neglected. 
However, given sufficient computational resources, these factors can be 
considered by GridPath. Enforcing flexibility-related constraints could result 
in additional unserved energy due to flexibility inadequacy. These various 
simplifications to our dispatch approach are what facilitate, computationally, a 
region-wide analysis that incorporates both probabilistic modeling and inter-
regional interactions. 
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2.3 STUDY AREA AND TRANSMISSION TOPOLOGY

The study area includes all BAAs in WECC, excluding those in Canada and 
Mexico. The transmission topology, line ratings, and path limits are based 
on the 2026 WECC Common Case database,24 which contains a nodal 
representation of the WECC transmission network, including individual 
branches, and groups of branches, called interfaces, across which path limits 
and other constraints are applied. 

The solid lines in Figure 2.5 represent inter-zone transmission links for which 
some or all of the modeled flow is constrained by one or more interface limits. 
We also apply summer derates on inter-zone transmission capacities based on 
data from the 2026 WECC Common Case database. The final study results do 
not incorporate transmission outages. Early tests with significant transmission 
derates and large transmission path outages had minimal impacts on West-
wide RA findings due to the high degree of redundancy on the high voltage 
transmission system. However, we flag transmission risk for subregional studies 
and especially for systems in which transmission outages could jeopardize 
access to large dispatchable resources as important areas of future work.

FIGURE 2.5.

Western US Case Study 
zonal topology.
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We also note that reliance on publicly available data places some limitations 
on the types of conclusions that can be drawn with this study, particularly with 
respect to the zonal topology. This study is based on a physical representation 

24  Available at: https://www.wecc.org/SystemAdequacyPlanning/Pages/Datasets.aspx 
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of the Western US grid and cannot provide 
insight regarding the resource adequacy 
position of an individual load serving entity 
(LSE) or collection of LSEs, because it does not 
contain contractual information. A shortage 
shown to be experienced in a particular BAA 
as modeled here may not be attributable or in 
actuality experienced in that BAA. The findings 
of this report and the associated data should 
therefore be interpreted as broadly indicative of regional resource adequacy 
positions, but not precise with respect to individual balancing area authorities 
(BAAs), Load Serving Entities (LSEs), or RA programs. Further insights could 
potentially be gained through the use of proprietary data and/or additional 
system-specific information. The information and methodologies provided in 
this study are intended as a foundation upon which such analyses could be 
pursued.

2.4 LOADS AND RESOURCE AVAILABILITY

This study relies on a large dataset that describes loads and resource 
availability across a wide range of potential conditions. This dataset was 
developed for the Western US for the year 2026 and is made available as part 
of the GridPath RA Toolkit. In the sections that follow, we provide high-level 
descriptions of the methodologies employed to transform the public data into 
datasets that can be used in RA analysis. Because the study footprint is so 
large and requires consistent data across numerous utilities and resources, we 
selected data sources and methodologies that could be applied universally 
across the entire footprint in a consistent manner. This necessitated some 
simplifications and approximations, which we describe in the following sections 
and in Appendix A. Appendix A also includes additional methodological details 
and benchmarking exercises.

2.4.1 LOADS

Load shapes were developed to estimate the hourly demand for electricity in 
the study year (2026) in each BAA across several years of historical weather 
conditions. The shapes were derived based on historical hourly loads from 
FERC Form 714,25 historical weather conditions across the West, historical 
economic conditions, and forecasted economic conditions in the study year. 
This resulted in hourly loads for 2026 that corresponded to 15 years of weather 
conditions (2006-2020). Other RA studies have used more weather years to 
probe a potentially wider range of conditions. However, these studies must 

25  This study utilized the 2006-2020 Form 714 database, available at: https://www.ferc.gov/sites/default/files/2021-06/Form-714-
csv-files-June-2021.zip

This dataset was developed 

for the Western US for the 

year 2026 and is made 

available as part of the 

GridPath RA Toolkit.
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grapple with the question of whether a longer historical record is necessarily 
more accurate given recent weather trends. In Section 4.3, we use weather 
statistics over a much longer historical record to delve into this topic in more 
depth and find that using a recent historical load record generally provides for 
more conservative estimates due to the higher frequency of extreme weather 
events in recent years.

Figure 2.6 shows the CAISO demand during two extreme weather events—late 
July of 2006 and mid-August in 2020. In each case, the figure compares the 
historical demand to the demand transformed to 2026, the study year. 

CAISO 
JULY 2006 HEAT WAVE

CAISO 
AUGUST 2020 HEAT WAVE

   Historical Load

  Transformed load to 2026

FIGURE 2.6. 

Load transformation 
example for CAISO.

At a high level, historical trends suggest that CAISO demand may tend to be 
lower than it was in the historical record if the same weather conditions were 
to be experienced in the study year. This is due primarily to the expansion 
of behind-the-meter PV, which has significantly decreased demand during 
daylight hours in recent years. Intuitively, the transformation has a much larger 
impact on the demand associated with the July 2006 heat wave than that 
associated with the 2020 heat wave because there were significant changes in 
CAISO demand between 2006 and 2020, especially during daylight hours. 

In contrast to the trends in CAISO, other parts of the West see exacerbated 
load conditions during historical weather events when transformed to the 
study year. Figure 2.7 compares the historical and transformed loads in Avista’s 
BAA during the same weather events. In Avista, loads peak at higher levels 
and later in the day during heat events in more recent years, perhaps due to 
more widespread adoption of air conditioning. This trend results in increased 
demand during evening hours across both the 2006 and 2020 heat events. As 
with CAISO, the impact of the transformation on Avista’s load is greater for the 
2006 heat wave than the 2020 heat wave due to the changes in the load shape 
that were experienced between 2006 and 2020.
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AVA 
JULY 2006 HEAT WAVE

AVA 
AUGUST 2020 HEAT WAVE

   Historical Load

  Transformed load to 2026

FIGURE 2.7.

Load transformation 
example for Avista.

We note that the load shapes used in this study diverge from utility forecasts, 
especially where historical trends in load shapes may not be indicative of 
the future. While the load shapes in this study may provide a reasonable 
characterization of load for a West-wide near-term RA analysis, more 
sophisticated methodologies that leverage additional information may be required 
for longer-term studies, where for example, electrification may significantly alter 
load shapes, or for studies that focus on an individual BAA or LSE.

2.4.2 DEMAND-SIDE RESOURCES

As described in the previous section, the impacts of behind-the-meter 
PV are embedded within the load shapes in this study and the load shape 
transformation estimates the impact of these resources continuing to grow 
over time based on their historical growth. To the extent that other demand-
side resources, including demand response and other behind-the-meter 
generation and storage, have influenced the historical metered load, their 
estimated impacts in the study year are also embedded within the transformed 
load shape. In this way, demand-side resources are treated implicitly by the 
model. This is likely a conservative approach that captures the weather-
sensitivity of demand-side resource availability, but may underestimate the 
impacts of demand-side resources in the future should they be adopted at 
rates that far exceed historical trends. More explicit modeling of weather-driven 
demand-side resource availability, especially for longer term scenarios, remains 
a priority for future studies.

2.4.3 GENERATION AND STORAGE

Several data sources and methods were employed to estimate the availability 
of generation and storage. In this section, each technology is summarized with 
a brief table describing the risks captured by the study, any necessary data 
transformations, and the data sources. More detailed information, including 
benchmarking information, can be found in Appendix A.
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TABLE 2.2. 

Thermal generator key inputs, assumptions and sources.

THERMAL GENERATORS

Risks Analyzed • Random forced outages (uncorrelated and weather-independent)
• Temperature-based capacity derates

Data Transformation Methods • Exponential failure and repair models tuned to forced outage rate 
(FOR) and mean time to repair (MTTR) information

• Project-specific temperature derate functions derived from summer and 
winter capacities and site-specific historical temperature data 

Data Sources • Summer and winter capacities from EIA Form 860M (February 2021)26

• Generator-specific FOR and MTTR information from 2026 WECC 
Common Case where available, averaged by technology type where not 
available

• Site-specific hourly temperature data from the National Solar Radiation 
Database (NSRDB) (1998-2019)27

TABLE 2.3. 

Hydropower key inputs, assumptions and sources.

HYDROPOWER

Risks analyzed • Interannual and intra-annual variation in hydro availability due to 
different water years and seasonal schedules

• Forced outages (implicitly)

Data Transformation Methods • Weekly aggregated hydro budgets estimated based on historical 
monthly hydro generation for each BAA

• Aggregations include dispatchable, run-of-river, and pumped storage
• Monthly hydro budgets for each BAA were adjusted to account for 

historical trends (detrended and extrapolated to the study year)
• Min and max constraints were estimated as functions of the hydro 

budget based on historical aggregated hourly hydro generation data 
where available

Data Sources and Coverage • Historical plant-specific monthly hydro generation from EIA Form 
923/906 (2001-2020)28

• Historical aggregated hourly hydro generation from the BPA Total Load 
and Wind Generation Report (2007-2020),29 CAISO Daily Renewables 
Watch (April 2010-Jan 2021),30 and WECC (2005) for estimation of min 
and max constraints

26  This study was based on the February 2021 EIA Form 860M, available at: https://www.eia.gov/electricity/data/eia860m/archive/
xls/february_generator2021.xlsx
27  Sengupta, M., Y. Xie, A. Lopez, A. Habte, G. Maclaurin, and J. Shelby. 2018. “The National Solar Radiation Data No Additions 
(NSRDB).” Renewable and Sustainable Energy Reviews 89 (June): 51-60.
28  Available at: https://www.eia.gov/electricity/data/eia923
29  Available at: https://transmission.bpa.gov/business/operations/wind/ (item 5)
30  Available at: http://www.caiso.com/market/Pages/ReportsBulletins/RenewablesReporting.aspx
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TABLE 2.4. 

Wind power key inputs, assumptions and sources.

WIND POWER

Risks analyzed • Hourly weather variability
• Forced outages (implicitly)

Data Transformation Methods • Plant-specific empirical logistic power curves derived based on 
historical performance where available, assumes 5% forced outage 
derate in all hours

• Where historical generation data was not available, estimated 
performance based on similar projects

Data Sources and Coverage • Modeled site-specific hourly 80m wind speed from NREL Wind ToolKit 
(2007-2014)31

• Historical plant-specific monthly generation from EIA Form 923-906 
(2007-2020)

TABLE 2.5. 

Solar power key inputs, assumptions and sources.

SOLAR POWER

Risks analyzed • Hourly weather variability

Data Transformation Methods • NREL System Advisor Model (SAM)32 with project-specific parameters 
estimated based on technology (PV vs. solar thermal), location, and 
COD

Data Sources and Coverage • Site-specific hourly weather data from NSRDB (1998-2019)
• Technological specifications from LBNL’s Utility-Scale Solar Data 

Update: 2020 Edition33 and EIA Form 860M

TABLE 2.6. 

Battery storage key inputs, assumptions and sources.

BATTERY STORAGE

Risks analyzed • Forced outages

Data Transformation Methods • None

Data Sources and Coverage • Duration information for individual battery projects was collected from 
various project websites, press releases, and news articles

31  Draxl, C., B.M. Hodge, A. Clifton, and J. McCaa. 2015. Overview and Meteorological Validation of the Wind Integration National 
Dataset Toolkit (Technical Report, NREL/TP-5000-61740). Golden, CO: National Renewable Energy Laboratory. Draxl, C., B.M. 
Hodge, A. Clifton, and J. McCaa. 2015. “The Wind Integration National Dataset (WIND) Toolkit.” Applied Energy 151: 355366. King, 
J., A. Clifton, and B.M. Hodge. 2014. Validation of Power Output for the WIND Toolkit (Technical Report, NREL/TP-5D00-61714). 
Golden, CO: National Renewable Energy Laboratory.
32  PySAM Version 2.2.2. National Renewable Energy Laboratory. Golden, CO. https://github.com/nrel/pysam.
33  Bolinger, M., Seel, J., Robson, D., Warner, C., “Utility-Scale Solar Data Update: 2020 Edition,”Lawrence Berkeley National
Laboratory, November 2020. Available at:  https://emp.lbl.gov/publications/utility-scale-solar-data-update-2020 
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TABLE 2.7. 

Hybrid renewable key inputs, assumptions and sources.

HYBRID RENEWABLES

Risks analyzed • Hourly weather variability
• Forced outages for battery systems

Data Transformation Methods • Same as listed above for wind and solar availability
• Hybrid solar availability assumes an inverter loading ratio (ILR) or 1 to 

avoid suboptimal clipping

Data Sources and Coverage • Same as listed above for wind, solar, and battery systems

2.5 METRICS

RA metrics have been the subject of increasing discussion and scrutiny as 
the complexity of the RA problem has grown in recent years.34 There are a 
number of different ways to describe the likelihood of lost load in an RA study 
and these different metrics and different variations on terminology can make 
it difficult to compare across studies. In this study, we do not propose new or 
different RA metrics or standards, but we report findings across a wide range 
of metrics in the interest of transparency and improved understanding. This 
section provides descriptions of those metrics that are referenced throughout 
the report.

Loss of Load Probability (LOLP). 
An LOLP is the probability of 
encountering lost load over a given 
period of time, or the probability 
of encountering a loss of load 
event, where an event can take 
on any number of definitions. The 
Northwest Power and Conservation 
Council has traditionally planned 
for a 5% LOLP, where an event is defined as a year in which lost load is 
encountered at some point in time, regardless of how many times it is 
encountered within that year. In this study, we denote this convention, which 
describes the probability that lost load will be encountered on any given year, 
as LOLPyear. Another common LOLP convention is to count events as days in 
which lost load occurs—regardless of how many times lost load occurs within 
that day. This convention, which we denote LOLPday, represents the probability 
that lost load will be encountered on any given day. And finally, one can 
define an event as any hour in which lost load is observed and determine 
the corresponding LOLPhour. This hourly LOLP convention is more common for 

34  For more background and discussion regarding RA metrics, we refer you to the ESIG Redefining Resource Adequacy for Modern 
Power Systems report, which can be found at https://www.esig.energy/resource-adequacy-for-modern-power-systems/.

In this study, we do not propose new or 

different RA metrics or standards, but 

we report findings across a wide range 

of metrics in the interest of transparency 

and improved understanding. 
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studies that use convolution methods (versus chronological simulation, as in 
this study), because they cannot characterize multi-hour events.

Loss of Load Expectation (LOLE). Resource adequacy standards and study 
findings are often reported in terms of LOLE instead of LOLP, but the two 
metrics are related. LOLE metrics generally represent the expected number 
of events that are encountered over a given length of time. The LOLE can be 
calculated as the corresponding LOLP (depending on the event definition) 
times the length of time of interest. For example, the most common LOLE 
standard is the one-day-in-ten year standard. To calculate the LOLE in a manner 
consistent with this standard, you multiply the LOLPday, the probability that any 
given day will see lost load, by the number of days in a ten-year period:

LOLE = LOLPday × 365days/yr × 10yrs

Loss of Load Hours (LOLH). The LOLH is a special case of an LOLE metric—it is 
typically expressed as the expected number of hours per year that encounter 
lost load. The LOLH is often used in studies where it is not possible to count 
multi-hour events because of the use of a convolution-based model. These 
studies sometimes adopt an LOLH standard that reinterprets the one-day-in-
ten-year standard as 24 hours in 10 years, or an LOLH of 2.4 hours per year. The 
LOLH can be calculated from the corresponding LOLP in the following manner:

LOLH = LOLPhour × 8760hrs/yr

Expected Unserved Energy (EUE). The expected unserved energy typically 
represents the average amount of energy shortages that will be experienced 
in a given year. It is calculated by summing all of the shortages identified in a 
simulation and dividing by the number of simulated years. We also report the 
normalized EUE, EUEn, which is the EUE divided by the average annual load. 
The EUEn is typically very small and is reported in parts per million (ppm) by 
multiplying by 106.

We also include metrics that provide more insight about the nature of lost load 
events. We denote the average energy shortage experienced on a day with 
lost load as  and the average shortage experienced in an hour with lost load 
as EUE day

event . These metrics provide a sense of the typical size (in terms of both 
energy and capacity, respectively) of shortages when they are experienced. 
They can also be calculated from the other loss of load metrics using the 
following formulas:

EUE day
event

EUE

LOLPday × day × 365 days/yr
=

EUE hour
event

EUE

LOLH
=
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Average Event Duration. When multi-hour loss of load events can be described 
by an RA model, as is the case in this study, the average duration of such 
events can be derived from the metrics described above. If an event is defined 
as a day with lost load, then the average event duration is the average number 
of hours of lost load within a day that experiences lost load, which can be 
calculated as:

Average event duration =
EUE day

event

EUE hour
event

The resulting hours may be continuous or non-continuous throughout the day 
with this definition.35

In addition to these statistics, this report also includes statistical distributions 
and heatmaps to describe the timing, duration, and size of loss of load events. 

35  While there may be interest in defining events as continuous periods of lost load (of which multiple can occur in one day), care 
must be taken to avoid over-interpreting simulation results in this manner, especially where degeneracies (i.e., different, but equally 
valid solutions) are possible. For example, an optimization model might not be able to differentiate between a solution where 
unserved energy is experienced across 12 continuous hours in a day (1 event with a 12-hour duration) versus a solution where it is 
experienced in alternating hours across the day (12 events, each with 1-hr duration). For this reason, this study focuses on the energy 
and capacity shortages experienced across a day, rather than individual continuous periods of lost load within the day.
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3 

MONTE CARLO 
SCENARIOS 
AND RESULTS



This study explores three scenarios in the 2026 time frame using Monte Carlo 
analysis, each using a different resource portfolio: a No Additions Scenario, 
which reflects planned retirement and no planned resource additions; a 
California Additions scenario, which layers on additional resources in CAISO 
based on the California Public Utility Commission’s (CPUC) Preferred System 
Plan; and a Less Coal scenario, which incorporates the additional resources 
in California while also retiring about 11 GW of coal elsewhere in the West. 
All three scenarios are modeled as a physical system that is unencumbered 
by institutional barriers to coordination and where short-term operational 
decisions can be made optimally to avoid lost load. The following sections 
further describe each scenario and summarize the findings.

3.1 NO ADDITIONS SCENARIO

The No Additions Scenario estimates the underlying physical resource 
adequacy challenge in the Western United States without taking action. The 
scenario accounts for planned retirements, but not planned additions, unless 
they were already under construction as of February 2021. As such, the 
scenario describes the resource adequacy challenge for which current and 
forthcoming resource plans or procurement activities could be designed or 
modified to address. 

The resource list is based on information in EIA Form 860M (February 2021) 
and includes resources with commercial online dates prior to January 1, 2026, 
retirement dates after December 31, 2026, and one of the following EIA status 
codes: operating; standby/backup; out of service but expected to return to 
service in next calendar year; under construction, less than or equal to 50% 
complete; under construction, more than 50% complete; or construction 
complete, but not yet in commercial operation. Projects that were planned or 
had regulatory approvals, but were not yet under construction as of February 
2021, were excluded.

The resulting resource fleet in the No Additions Scenario is summarized in 
Figure 3.1.
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FIGURE 3.1.

Resource composition in the No Additions Scenario.

3.1.1 LOSS OF LOAD METRICS

Table 3.1 summarizes key loss of load metrics for the No Additions Scenario 
(see Section 2.5 for additional information about each metric). Where listed, 
uncertainties and ranges reflect approximate 95% confidence intervals 
assuming a binomial distribution for loss of load events. Notably, this scenario 
did not achieve a one-day-in-10-year LOLE, as there were, on average, 18.2 days 
every 10 years that experienced lost load (or 1.82 days per year). The average 
loss of load event in this scenario lasted 2.3 hours and resulted in 7,597 MWh of 
unserved energy.
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TABLE 3.1. 

Loss of load metrics in the No Additions Scenario.

METRIC VALUE DESCRIPTION

LOLPyear 69% ± 3% Probability of encountering lost load in a given year

LOLPday 0.50% ± 0.02% Probability of encountering lost load in a given day

LOLPhour 0.048% ± 0.001% Probability of encountering lost load in a given hour

LOLE (days/10yrs) 18.2 ± 0.8 Expected number of days with lost load in 10 years

LOLH (hrs/yr) 4.23 ± 0.14 Expected number of hours with lost load in a year

EUE (MWh/yr) 13,797 Expected amount of unserved energy in a given year

EUEnorm (ppm) 19.4 Average annual fraction of load not served x 106

EUE day
event

(MWh/loss-of-load-day)

7,597 Average total energy shortage on a loss of load day

EUE hour
event

(MW/loss-of-load-hour)

3,259 Average capacity shortage in a loss of load hour

Average Event Duration (hrs) 2.33 Average number of hours of lost load on a day with  
lost load

In addition to the average metrics described in Table 3.1, the GridPath 
simulation provides more descriptive information about the nature of lost 
load events experienced across the simulation. Figure 3.2 shows two ways 
of breaking out this information. Panel (a) breaks out the LOLH by month 
and hour of the day36 to show when the system is most likely to encounter 
shortfalls. In the No Additions Scenario, loss of load events were identified 
solely in summer evening hours, with the highest probability of lost load 
occurring at HE 18 (6-7pm in Pacific Daylight Time) in August. Panel (b) breaks 
out loss of load events by their duration, or the number of hours of lost load 
experienced on each day with lost load. In the No Additions Scenario, 93% 
of events were four hours or less, 99% of events were 6 hours or less, and all 
events were 8 hours or less. Figure 3.3 breaks out loss of load events by the 
total energy shortage and the maximum capacity shortage experienced on 
each day. For each cell in this chart, a resource that can reliably provide the 
corresponding amount of energy and capacity when needed can eliminate all 
events in the cell as well as the events in those cells above or to the left of it.

36  Where not otherwise specified, hour of the day in this report refers to hour ending (HE) in Pacific Standard Time.
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FIGURE 3.2.

Loss of load event timing and duration in the No Additions Scenario.

 a
 
LOSS OF LOAD HOURS PER YEAR  b

 
EVENT DURATION DISTRIBUTION

EXPECTED DAYS OF LOST LOAD IN 10 YEARS

FIGURE 3.3.

Capacity and energy shortages in the No Additions Scenario.

Taken together, the loss of load statistics for the No Additions Scenario paint 
a picture of a resource inadequate system, with an LOLE that exceeds one 
day in 10 years. However, the observed shortages were fairly small relative 
to the size of the system, the durations of the shortages tended to be short, 
and the timing of the shortages was consolidated into a relatively predictable 
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seasonal and diurnal pattern. Both the 
short duration of the shortages and the 
timing of the shortages on hot summer 
evenings as the sun begins to set 
suggest that shorter duration energy-
limited resources, like demand response 
and energy storage, may be well 
suited to meeting remaining needs and 
achieving resource adequacy. The next 
section delves into this more deeply.

3.1.2 CAPACITY AND ENERGY NEEDS

To characterize the amount of capacity and energy needed to achieve resource 
adequacy on a system, one must first select a resource adequacy standard. To 
determine capacity and energy needs in this study, we primarily rely upon a 
traditional one-day-in-10-year LOLE standard, however we also present results 
using alternative LOLP-based standards, including the 5% LOLP standard that 
has traditionally been used by the Northwest Power and Conservation Council 
and the 2.4-hour-per-year LOLH standard adopted by some utilities.

The simplest way to determine the capacity needs under an LOLP-based RA 
standard is to investigate the simulated shortages and their likelihoods using 
a duration curve. In a duration curve, the events are sorted from largest to 
smallest on the y-axis and the x-axis is calculated as the cumulative sum of 
the likelihoods of those events. The resource needs associated with a given 
LOLP-based RA standard can be found by reading the value along the duration 
curve that corresponds to the acceptable likelihood of an event. Figure 3.4 
shows this for the one-day-in-10-year LOLE standard. In this example, an event 
is any day with lost load and the capacity shortage associated with an event 
is the maximum amount of lost load observed during the event. The value of 
the duration curve at one day in 10 years is 9.3 GW. If this amount of capacity 
can be provided when needed, then the events to the right of the dotted 
line are eliminated and the events to the left of the dotted line are reduced 
in magnitude. This capacity addition effectively slides the duration curve 
downward until it hits the x-axis at one day in 10 years (as shown in the  
dashed line).

Both the short duration of the shortages 

and the timing of the shortages on hot 

summer evenings as the sun begins 

to set suggest that shorter duration 

energy-limited resources, like demand 

response and energy storage, may be 

well suited to meeting remaining needs 

and achieving resource adequacy.
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FIGURE 3.4.

Capacity shortage duration curve 
in the No Additions Scenario.

  One-day-in-1-year standard

  Capacity shortages before additions

  Capacity shortages after additions

This same exercise can be undertaken to identify the needs associated with 
alternative resource adequacy standards (e.g., LOLP = 5% of years and LOLH 
= 2.4 hrs/year) using the same underlying hourly data from GridPath, but 
calculating events in different ways (e.g., an event is a year with unserved 
energy or an hour with unserved energy, respectively). Table 3.2 compares the 
capacity shortages identified using the one-day-in-10-year LOLE standard to 
those identified using a 5% LOLP standard or a 2.4 hour per year LOLH standard.

TABLE 3.2. 

Perfect Capacity needs in the No Additions Scenario.

RA STANDARD
PERFECT CAPACITY NEED 
IN NO ADDITIONS SCENARIO

LOLE = One day in 10 years 8.8 - 9.9 GW

LOLPyear = 5% 11.0 GW

LOLH = 2.4 hrs/yr 2.1 GW

For this particular system, the 5% LOLP metric was 
most stringent and a 2.4 hr/year LOLH standard was 
much less stringent than the one-day-in-10-year 
LOLE standard. The vast difference between the 
capacity shortages associated with the one-day-
in-10-year LOLE standard and the 2.4 hr/year LOLH 
standard is not surprising given that the average 
event duration for this case was 2.3 hours. If the 
system hypothetically encountered 10 typical 2.3-
hour events in a ten-year period, it would be far 
from achieving a one-day-in-10-year LOLE standard, 

The vast difference between 

the capacity shortages 

associated with the one-day-

in-10-year LOLE standard 

and the 2.4 hr/year LOLH 

standard is not surprising 

given that the average event 

duration for this case was 

2.3 hours. If the system 

hypothetically encountered 

10 typical 2.3-hour events in 

a ten-year period, it would be 

far from achieving a one-day-

in-10-year LOLE standard, but 

would still meet a 2.4 hr/year 

LOLH standard.
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but would still meet a 2.4 hr/year LOLH standard. This does not mean that an 
LOLH standard is any less valid than an LOLE standard—they simply represent 
different risk tolerances. We do not delve into the origins or justifications 
of various RA standards in this report, nor do we advocate for the adoption 
of one standard over another, but these findings make clear that identified 
resource needs may be highly sensitive to the adopted standard. In selecting 
a standard, policymakers and planners should be aware of this sensitivity and 
thoughtful about the potential cost impacts and impacts to health, human 
safety, and the economy of both potential RA shortages and any actions taken 
to avoid such shortages.

The simple exercises described above assume that additional capacity is 
available in all hours. This type of capacity, which has no energy limitations, 
likelihood of failure, or operational limitations, is often called “perfect capacity”. 
Perfect capacity shortages can be a useful way to provide a simple high level 
description of the magnitude of RA challenges on a system and to make 
apples-to-apples comparisons between different scenarios, but it can also 
obscure important features of resource need.

To provide more visibility into the energy or duration requirements for 
achieving resource adequacy, a similar exercise can be undertaken in two 
dimensions: one that represents capacity and one that represents energy. The 
heatmap in Figure 3.3 is one way of describing this two-dimensional duration 
curve. To identify the amount of capacity and energy required to meet the one-
day-in-ten-year standard, one must draw a two-dimensional box that achieves 
the standard, rather than a one-dimensional line. An example of this is shown 
in Figure 3.5. In this example, if a resource was available that could provide 
26,000 MWh of energy on any day with lost load, with a maximum capacity 
of 11 GW, that resource would eliminate all of the events within the shaded box 
(which occur 17.2 times every 10 years), leaving only the events below and/or 
to the right of the box (which occur 0.97 days every 10 years).
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EXPECTED DAY OF LOST LOAD IN 10 YEARS FIGURE 3.5.

Capacity and 
energy solution 
example in the 
No Additions 
Scenario.

While Figure 3.5 shows one potential strategy for meeting the one-day-in-
10-year standard, multiple strategies exist (i.e., multiple boxes can be drawn) 
to meet the standard. Figure 3.6 shows several strategies for achieving the 
standard, represented as the resource capacity required as a function of the 
resource duration. Note that duration in this curve is shorthand for energy 
divided by capacity and does not limit the number of hours over which that 
energy and capacity could be provided. For example, a 100 MW 4-hr solution 
could be provided as 50 MW for 8 hours using this convention. This curve 
represents an efficient frontier for the capacity and energy additions that meet 
the standard at lowest cost. The curve makes clear the trade-off between 
capacity and duration for short-duration solutions (i.e., the longer duration 
solutions you have, the less total capacity you need), but also shows that 
increasing duration beyond three hours is not necessary to meet the reliability 
standard and provides little value in terms of avoiding capacity need for this 
particular system. The lowest cost point along this curve can be determined by 
examining the costs of solutions of different durations, but the rapid flattening 
of the slope suggests that the economically optimal duration is unlikely to be 
beyond four hours, and may be as low as two or three hours.
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FIGURE 3.6.

Capacity and duration 
efficient frontier for the  
No Additions Scenario.

3.1.3 DRIVERS OF UNSERVED ENERGY

Net load (load minus wind and solar output) was a strong driver of unserved 
energy in the simulated years. However, as wind and solar are still not dominant 
in the simulated system, net load conditions in the No Additions Scenario were 
still primarily driven by load levels, with peak load and peak net load conditions 
occurring on the same day. The peak net load in the simulation was 142.1 GW, 
and unserved energy was not observed below WECC net load of 118.3 GW. 
The additional variation in unserved energy can be explained by the hydro and 
outage conditions in the simulation.

FIGURE 3.7.

Relationship between capacity 
shortages and net load in the  
No Additions Scenario.

Figures 3.8 and 3.9 show resource availability on some key days in the 
simulation. For thermal units (including coal, gas, nuclear, biomass, and 
biogas) the resource availability represents the resources’ capacity adjusted 
for simulated outages and temperature-driven thermal derates. For hydro and 
storage, resource availability represents their output plus any contingency 
reserves provided. Wind and solar resource availability is based on their 
simulated output profiles.
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On the peak load day in the Monte 
Carlo Simulation, load (including 
contingency reserves) reached 152.9 
GW. The simulation included multiple 
instances of these load days, and 
the highest hourly capacity shortage 
observed on a day with these load 
conditions was 14.9 GW. The system 
resource availability on this day is 
shown in Figure 3.8(a). On this day, 
extreme load conditions combine with 
low wind and hydro availability as well 
as reduced gas availability (attributable 
largely to thermal derates) to produce 
a large shortage in the afternoon and 
early evening.

The peak net load day in the Monte Carlo Simulation (Figure 3.8(b)) had similar 
load conditions relative to the peak load day described above, peaking at 152.8 
GW, but even lower wind and solar output. Peak net load on this day was 142.1 
GW vs 140.1 GW on the day above. With similar hydro and gas availability on 
these two simulation days, the higher net load conditions resulted in a higher 
shortfall: the maximum capacity shortage observed on this peak net load day 
was 16.9 GW. The largest hourly capacity shortage in the simulation was 17.5 
GW and occurred on a day with high peak net load conditions (140.0 GW) in 
addition to relatively low hydro and thermal availability. While the magnitude 
of the afternoon and evening shortages was large, sufficient resources were 
available during the night and the morning to produce energy that could be 
shifted to the times of grid stress using storage, a potential solution we test in 
the Less Coal Scenario.

Net load (load minus wind 

and solar output) was a strong 

driver of unserved energy in the 

simulated years. However, as wind 

and solar are still not dominant 

in the simulated system, net load 

conditions in the No Additions 

Scenario were still primarily driven 

by load levels, with peak load and 

peak net load conditions occurring 

on the same day.
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FIGURE 3.8.

Load and resource 
availability on 
challenging days in the 
No Additions Scenario.
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The simulated system is still dominated by thermal resources such as gas, 
coal, and nuclear as well as hydropower, so in addition to load and net load 
conditions, thermal outages and hydro conditions can also drive unserved 
energy. Figure 3.9(a) shows an example of this. Nuclear, coal, and gas outages 
together with lower hydro availability resulted in a capacity shortage of almost 
6 GW in HE 18 on this day. Higher thermal availability as well as more favorable 
wind conditions can result in no capacity shortages on days with the higher 
load and lower wind and solar output conditions (Figure 3.9(b)). In HE 18, the 
combined nuclear, coal, and gas availability on the former day was 88.9 GW 
and 93.3 GW on the latter. Hydro output levels were 30.2 GW and 33.6 GW 
respectively. Despite lower net load conditions, the former day (peak net load 
of 130.8 GW) experienced up to 5.7 GW of capacity shortage while the latter 
day (peak net load of 134.8 GW) did not encounter RA issues.
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FIGURE 3.9.

Load and resource 
availability on days 
with varying thermal 
unit outages and hydro 
availability in the No 
Additions Scenario.
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3.1.4 REGIONAL FLOWS

During the hours when the system experienced loss of load in the simulation, 
significant flows were observed between subregions within the Western US, 
in particular from the Pacific Northwest and Desert Southwest regions into 
California. On average, California imported 5.2 GW from the Desert Southwest 
and 3.3 GW from the Pacific Northwest during these hours.

Flows between subregions, however, varied widely across hours with unserved 
energy. Figure 3.10 shows duration curves of net imports into each subregion 
during the hours when the respective region experienced unserved energy. 
During the hours when it encountered loss of load, California imported 
between 2.1 GW and 17.9 GW, with at least 7 GW imported around 80 percent 
of the time and at least 6 GW imported around 90 percent of the time. When 
unserved energy occurred in the Desert Southwest, flows to the subregion 
varied between 1.4 GW of exports and 7.5 GW of imports. For the Basin-Rocky 
Mountain subregion, flows varied between 3.2 GW of exports and 1.7 GW of 
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imports during the subregion’s hours of unserved energy. In the few hours 
when the Pacific Northwest experienced unserved energy, it remained a net 
exporter, with exports varying between 4.8 GW and 0.3 GW.

FIGURE 3.10. 

Net imports during loss of load hours in the No Additions Scenario.

Higher shortages in California did appear to be correlated with lower import 
levels, although the relationship between the import level and the amount of 
unserved energy experienced was weak, with other factors such as net load 
level, hydro availability, and thermal outage conditions playing important roles. 
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FIGURE 3.11.

Relationship between 
California imports and 
hourly shortages in the No 
Additions Scenario.

Loss-of-load events in California frequently coincided with high-risk conditions 
in the rest of the Western region. Unserved energy was experienced in the rest 
of the region in about 50 percent of the hours in which loss of load occurred in 
California. Conversely, California encountered a loss of load event in 91 percent 
of the hours in which unserved energy occurred in the rest of the West. An 
example is shown in Figure 3.12. In this week, California, the Northwest, the 
Southwest, and the Rocky Mountain—Basin regions all experienced high load 
levels on Monday and Tuesday, likely a high-temperature period across a wide 
area in the West. None of the regions were able to lean on neighbors to cover 
their shortages, with resources inadequate to meet the demand over a large 
geographic area.37

37  The formulation of the GridPath simulation ensures that each BA prioritizes meeting its own load before exporting energy. 
When it has surplus resources, a BA can export to other BAs without prioritizing those in its own region. This is why a region may 
experience unserved energy while exporting to other regions at the same time, as is the case for the Northwest and Southwest 
regions in Figure 3.12. Some BAs within those regions are experiencing lost load while others have surplus resources that they are 
exporting to other regions.
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FIGURE 3.12. 

Example regional load and 
resource availability during 
a constrained week in the 
No Additions Scenario.

CALIFORNIA NORTHWEST

ROCKY MOUNTAIN–BASINSOUTHWEST

Key Takeaways from the No Additions Scenario

• Without taking any action, we estimate that the West could 
be physically short by about 8.8 - 9.9 GW in 2026, if planning 
to a one-day-in-10-year LOLE standard. This shortage is much 
smaller than the amount of capacity additions in current utility 
plans in the West, including the procurement ordered with 
CPUC Decision D.21-06-035, which requires 11.5 GW of new net 
qualifying capacity through 2026.

• Shortages are expected to be relatively short in duration 
(mostly 4 hours or less) and occur in the evenings on hot 
summer days.

• Different combinations of capacity and energy could be 
secured to achieve a one-day-in-10-year LOLE standard, 
however we find that pursuing solutions beyond four hours 
in duration yields very small or negligible resource adequacy 
benefits for 2026.

• During loss of load events, California averaged approximately 
5.2 GW of imports from the Desert Southwest and 3.3 GW of 
imports from the Pacific Northwest. Interregional flows were 
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key determinants of subregional resource adequacy positions 
and must be accounted for within RA analysis.

3.1.5 SUBREGIONAL ANALYSIS

In this section we explore how the RA challenges identified by different RA 
programs in the West might compare to those identified in a West-wide study. 
To investigate this, we broke the study footprint into subareas that roughly 
resemble the footprints of existing and proposed resource adequacy programs 
(CAISO and the Western Resource Adequacy Program, or WRAP). Table 3.3 
lists the BAAs assigned to each subarea and Figure 3.13 shows the nodes 
and zonal transmission links in each subarea. The BAAs in the WRAP subarea 
were selected based on WRAP participants announced as of December 7, 
2021. BANC was also included to simplify the transmission treatment for TIDC 
in the study. Trading hubs that sit adjacent to the two subareas (Mead and 
Palo Verde) were included in both subareas and any associated resources 
were allocated to the corresponding subarea based on publicly available 
information. 

TABLE 3.3.

Subarea definitions.

SUBAREA WECC BAAS/ZONES

CAISO CIPB, CIPV, CISC, CISD, VEA, TH_Mead (partial), TH_PV (partial)

WRAP AVA, AZPS, BANC, BPAT, CHPD, DOPD, GCPD, IPFE, IPMV, IPTV, NEVP, NWMT, PACW, 
PAID, PAUT, PAWY, PGE, PSEI, SCL, SPPC, SRP, TIDC, TPWR, TH_Malin, TH_Mead (partial), 
TH_PV (partial)

Excluded EPE, IID, LDWP, PNM, PSCO, TEPC, WACM, WALC, WAUW

FIGURE 3.13.

Subarea zonal 
transmission topologies.
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Note that the subareas do not exactly align with real resource adequacy 
programs because they consider loads and resources that are associated with 
each balancing area within a physical model of the West, rather than allocating 
resources to load serving entities (LSEs) based on ownership and contractual 
information. To the extent that there are resources in one subarea that are 
contractually obligated to serve loads in another subarea, actual resource 
adequacy positions will differ from this analysis. This analysis is therefore 
broadly indicative of regional dynamics, but not necessarily indicative of 
actual resource adequacy program positions. Further work to assign resources 
to LSE’s participating in resource adequacy programs based on contractual 
information would offer more actionable contributions in this area, but may 
require confidential information.

The transmission topology in these scenarios was modified to remove 
transmission links between subareas. Therefore, only WECC paths and other 
interfaces that are fully within a subarea are enforced in these scenarios (these 
path constraints are enforced across the solid lines in Figure 3.13).

In the subregional analysis, we characterize RA needs under two very different 
policy constructs: one in which each footprint is treated as an island (the 
Island Policy); and one in which each footprint is able to rely, to some extent, 
on excess generation from neighboring systems, subject to transmission limits 
(the Import Policy). It is important to note that neither of these two policies is 
more physically accurate and in fact there are many equally valid alternative 
policies that could be adopted by a planner. Planning for resource adequacy in 
a particular system within the context of a broader market is fundamentally a 
policy decision about risk. In the most extreme example, a risk averse planner 
might assume no reliance on market availability when the system is constrained 
to eliminate the likelihood of an event where planners expect some assistance 
from outside the footprint that does not materialize. This policy (our Island 
Policy) will reduce resource adequacy risk, but will tend to lead to overbuild.

In contrast to the Island Policy, a highly cost-sensitive planner might instead 
look to the regional resource adequacy challenge and plan to address 
only the portion of that regional challenge that is attributable to their 
system. Attribution is subjective and can be a highly complex undertaking. 
Furthermore, without formal planning coordination (through for example, a 
resource adequacy program), this approach requires planners to make an 
assumption about how other entities will plan. This assumption could be made 
explicitly—for example, if a planner includes load and resource zones outside 
of their system in their resource adequacy analysis to account for imports, then 
the planner must decide whether to add resources outside of their footprint to 
ensure that external zones are resource adequate themselves. This assumption 
could also be made implicitly, by adopting an import capability assumption, 
which may not be specifically tied to resource additions outside the footprint, 
but certainly makes implications about the resource adequacy positions of 
neighboring entities when the system is constrained.
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In this study, we adopt an import policy that allows the planner to account for 
excess generation from existing resources outside of their footprint, but does 
not assume additional resources will necessarily be built by other entities to 
help mitigate regional RA challenges. We call this a Unilateral Imports Policy 
because it accounts for imports, but also allows the planner to act unilaterally 
to achieve resource adequacy on their own system. In this policy, the planner 
plans for the minimum of the islanded subarea shortage and the West-wide 
shortage experienced in each hour.38 For a given hour, the policy makes the 
following assumptions:

• If the West-wide shortage is smaller than the islanded subarea shortage, 
then there is some excess capability somewhere in the West, with 
adequate transmission, that could mitigate a portion or all of the shortage 
experienced in the subarea. In such an hour, the Unilateral Imports Policy 
assumes that, at worst, the subarea would experience all of the West-wide 
shortage, so the policy assumes that the subarea shortage is equal to the 
West-wide shortage, and the imports during that hour are equal to the 
amount of shortage avoided: the islanded subarea shortage minus the 
West-wide shortage. 

• If the West-wide shortage is larger than the islanded subarea shortage, then 
there are factors outside of the subarea that are exacerbating the regional 
RA challenge beyond those experienced by the subarea. In the Unilateral 
Imports Policy, it is not the responsibility of the subarea planner to mitigate 
these external issues, so the planner considers only the shortage identified 
for the islanded subarea. In this hour, the subarea shortage is equal to the 
islanded subarea shortage and the imports are equal to zero, because the 
rest of the system is constrained at the same time.

While not as costly as an Island Policy, the Unilateral Imports Policy (or Imports 
Policy as it is referred to throughout this report) will still tend to result in 
overbuild because the West-wide shortages may be further reduced by actions 
taken by other entities. Further cost reductions can be achieved through formal 
resource adequacy coordination, which allocates a portion of the regional need 
to each entity and provides each planner with confidence that other entities 
will act to meet their allocated needs.

3.1.5.1 CAISO subarea

Table 3.4 lists the loss of load metrics for the CAISO subarea under both 
the Island and Import policies described above. When the CAISO subarea 
was treated as an island, the No Additions Scenario resulted in a very high 
likelihood of lost load—100% of the simulated years saw a shortage and the 
LOLE was 335 days every 10 years. However, adopting the import policy 
avoided nearly all of these shortages and resulted in loss of load risk in CAISO 
that closely aligned with the West-wide findings for the No Additions Scenario.

38  This requires the West-wide and subarea-specific simulations to consider the same underlying system conditions in each hour.
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TABLE 3.4. 

Loss of load metrics for the CAISO subarea in the No Additions Scenario, compared to West-wide loss 

of load metrics.

METRIC

NO ADDITIONS 
SCENARIO -  
CAISO ISLAND

NO ADDITIONS 
SCENARIO -  
CAISO IMPORTS

NO ADDITIONS 
SCENARIO -
WEST-WIDE

LOLPyear 100% 69% 69%

LOLPday 9.18% 0.50% 0.50%

LOLPhour 0.991% 0.047% 0.048%

LOLE (days/10yrs) 335 18.2 18.2

LOLH (hrs/yr) 86.8 4.15 4.23

EUE (MWh/yr) 225,373 12,134 13,797

EUEnorm (ppm) 1,083 58 19.4

EUE day
event

(MWh/loss-of-load-day)

6,724 6,685 7,597

EUE hour
event

(MW/loss-of-load-hour)

2,595 2,922 3,259

Average Event Duration (hrs) 2.59 2.29 2.33

Figures 3.14 and 3.15 show the timing and duration of events under the 
Island and Import Policies. With the Island Policy, shortages were observed 
throughout May-October and sometimes spanned large swaths of the day—as 
early as HE 12 and as late as HE 24. HE 19 (8pm PDT) in August had the highest 
loss of load risk. With access to imports, the risk was significantly reduced 
across all periods and was concentrated primarily in HE 15 through HE 20 in 
July - September. The highest loss of load risk occurred slightly earlier at HE 18 
(7pm PDT) in August, and the longest duration events observed with the Island 
Policy were mitigated (or shortened) by imports.
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FIGURE 3.14.

Loss of load event timing and duration for the CAISO subarea without imports in the  
No Additions Scenario.

 a
  

LOSS OF LOAD HOURS PER YEAR  b
  

EVENT DURATION DISTRIBUTION

FIGURE 3.15.

Loss of load event timing and duration for the CAISO subarea with imports in the  
No Additions Scenario.

 a
  

LOSS OF LOAD HOURS PER YEAR  b
  

EVENT DURATION DISTRIBUTION
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Table 3.5 summarizes the perfect capacity needs under various RA standards 
for the CAISO subarea under the Island and Import Policies. Across all three 
RA standards, the CAISO Island case yielded significant capacity needs. If 
using a one-day-in-10-year standard or a 5% LOLP standard, adopting the 
import policy reduced perfect capacity needs by about 3 GW. However, if 
using a 2.4 hour per year LOLH standard, adopting the import policy avoided 
about 6.1 GW of perfect capacity needs. In this example, the capacity avoided 
by adopting an import policy was highly sensitive to the RA standard. This 
example highlights the complexity of the relationships between different 
probability-based RA standards and the difficulty in translating between them 
without system-specific probabilistic analysis.

TABLE 3.5. 

Perfect capacity needs for the CAISO subarea in the No Additions Scenario, compared to West-wide 

perfect capacity needs.

RA STANDARD

NO ADDITIONS 
SCENARIO -
CAISO ISLAND

NO ADDITIONS 
SCENARIO -
CAISO IMPORTS

NO ADDITIONS 
SCENARIO -
WEST-WIDE

LOLE = One day in 10 years 11.2 GW 8.2 GW 9.3 GW

LOLPyear = 5% 11.8 GW 8.8 GW 11.0 GW

LOLH = 2.4 hrs/yr 8.0 GW 1.9 GW 2.1 GW

The difference between the capacity needs in the Island and Import cases was 
even greater as energy limitations were applied, as shown in Figure 3.16 for the 
one-day-in-10-years RA standard. If limited to 2-hour resources, adopting the 
Import Policy avoided over 15.7 GW of capacity relative to the Island Policy. 
This is because accounting for interactions between neighboring systems tends 
to reduce the duration of shortages and the need for longer duration solutions.

  No Additions - West-wide

  No Additions - CAISO Island

   No Additions - CAISO Imports

FIGURE 3.16.

Capacity and duration 
efficient frontier for the 
CAISO subarea, with and 
without imports, in the  
No Additions Scenario.

ADVANCING RESOURCE ADEQUACY ANALYSIS WITH THE GRIDPATH RA TOOLKIT   |  67



3.1.5.2 WRAP subarea

Table 3.6 lists the loss of load metrics for the WRAP subarea under both the 
Island and Import Policies. The WRAP Island case saw much less frequent 
lost load than the West-wide case, but still did not meet a one-day-in-10-year 
standard. While accounting for imports did avoid some lost load, the relative 
impact of imports was much smaller than was seen for the CAISO subarea.

TABLE 3.6. 

Loss of load metrics for the WRAP subarea in the No Additions Scenario, compared to West-wide loss 

of load metrics.

METRIC

NO ADDITIONS 
SCENARIO -  
WRAP ISLAND

NO ADDITIONS 
SCENARIO -  
WRAP IMPORTS

NO ADDITIONS 
SCENARIO -  
WEST-WIDE

LOLPyear 20% 17% 69%

LOLPday 0.08% 0.07% 0.50%

LOLPhour 0.008% 0.006% 0.048%

LOLE (days/10yrs) 3.10 2.43 18.2

LOLH (hrs/yr) 0.74 0.55 4.23

EUE (MWh/yr) 824 703 13,797

EUEnorm (ppm) 2.4 2.1 19.4

EUE day
event

(MWh/loss-of-load-day)

2,659 2,895 7,597

EUE hour
event

(MW/loss-of-load-hour)

1,115 1,279 3,259

Average Event Duration (hrs) 2.38 2.26 2.33

As shown in Figure 3.17, the capacity needs identified for the WRAP subarea 
represented a small fraction of the West-wide need, and were not very 
sensitive to the import policy in this case. This finding is specific to this 
particular system and scenario. In Section 3.3, we explore a scenario where the 
WRAP subarea capacity needs are highly dependent on the import policy.
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  No Additions - West-wide

  No Additions - WRAP Island

   No Additions - WRAP Imports

FIGURE 3.17.

Capacity and duration 
efficient frontier for the 
WRAP subarea, with and 
without imports, in the  
No Additions Scenario.

3.1.5.3 Benefits of planning coordination

The subarea analyses provide a way of quantifying the potential benefits 
of adopting import policies and coordinating on RA across subareas. Table 
3.7 shows how different policies affect the total identified need across the 
subareas and compares this to the West-wide need. Because some BAs are 
not included in either subarea, the 4-hr capacity needs listed in the table 
represent a lower bound of the identified needs if all BAs were to be included. 
The difference between this value and the West-wide capacity need therefore 
represents a lower bound for the potential capacity savings of full coordination 
across the Western US. The actual overbuild will depend on the policies 
adopted in the remaining BAs.

TABLE 3.7. 

4-hr capacity needs with various import policies adopted for the CAISO and WRAP subareas, 
compared to full coordination, in the No Additions Scenario.

CAISO POLICY WRAP POLICY

4-HR CAPACITY NEED  
IN CAISO + WRAP 
SUBAREAS

OVERBUILD  
LOWER BOUND

Island Island 14.4 GW 5.1 GW

Island Imports 14.3 GW 5.0 GW

Imports Island 9.5 GW 0.2 GW

Imports Imports 9.4 GW 0.1 GW

Full West-wide coordination
(Includes needs outside CAISO + WRAP)

9.3 GW -

For this particular scenario, most of the benefits of full coordination between 
the CAISO and WRAP subareas could be achieved by adopting the Imports 
Policy for the CAISO footprint—this alone reduced the lower bound of the 
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overbuild from 5.1 GW to 0.2 GW. In interpreting these results, it is important 
to keep in mind that the subarea analyses each assume full coordination 
within their footprints, so the incremental benefit of full coordination across 
the footprints may be relatively small. If we were to calculate the potential 
overbuild without coordination within each subarea (i.e., each BA may be 
treated as an island or adopt an import policy), the benefits of full coordination 
would be much larger.

Key Takeaways from the Subregional Scenarios

• Due to the highly interconnected nature of the West, resource 
adequacy analysis that treats subareas or RA programs as 
islands distorts the observed RA challenges and may lead 
to suboptimal RA solutions, including potentially significant 
overbuild.

• To account for interregional operational interactions without 
full West-wide planning coordination, RA programs may 
adopt market access policies that are informed by West-wide 
analysis. This study describes one such policy, the Unilateral 
Imports Policy, which allows a planner to account for the 
ability of neighboring systems to help avoid shortages when 
they are not constrained, but does not assume that other 
entities will necessarily take planning steps to address RA.

• Applying the Unilateral Imports Policy to CAISO results in 
very similar RA findings for CAISO as the entire West in the 
No Additions Scenario. In this particular case, if CAISO were 
to adopt the Unilateral Imports Policy, CAISO would plan to 
address most of the identified resource adequacy needs in the 
West.

3.2 CALIFORNIA ADDITIONS SCENARIO

While the No Additions Scenario provides a useful reference point for ongoing 
planning and procurement activities that could influence the composition 
of the resource fleet in 2026, it does not provide a sense of how resource 
adequate the system might be 2026 given that some utility plans are likely to 
come to fruition between now and then. To offer additional insights into the 
nature of resource adequacy in 2026, we developed an alternative scenario 
(the California Additions Scenario) that incorporates additions in California 
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roughly consistent with the California’s Public Utility Commission’s Preferred 
System Plan through 2026. These additions are summarized in Table 3.8. 
Resource additions were allocated to CAISO BAs based on resource shares 
in the No Additions Scenario (for example, 54% of CAISO solar in the No 
Additions Scenario was in CISC, so 54% of the added solar was placed in CISC). 
For simplicity, we added these resources by scaling up BA-level aggregated 
resource shapes, which may tend to underestimate capacity factors and 
diversity benefits.

TABLE 3.8.

Resource additions in the California Additions 
Scenario, relative to the No Additions Scenario.

RESOURCE TOTAL CAISO ADDITIONS

Biomass MW +107

Geothermal MW +184

Wind MW +3,673

Utility-scale solar MW +11,000

Storage MW +12,749

Storage MWh +51,780

Total MW +27,713

FIGURE 3.18.

Resource composition in the California Additions Scenario.
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In the West-wide simulation, the 
California Additions Scenario 
identified only seven events 
in 1,000 years of simulated 
conditions. This is well below 
the one-day-in-10-year standard, 
indicating that the 27.7 GW of 
additions was more than enough 
to meet the 8.8 - 9.9 GW of 
perfect capacity needs identified 
in the No Additions Scenario. 
When modeling CAISO as an 
island in this scenario, loss of load 
risk remained quite low and well 
below one day in 10 years. 

TABLE 3.9. 

Loss of load metrics in the California Additions Scenario, compared to the No Additions Scenario.

METRIC

CA ADDITIONS 
SCENARIO -
WEST-WIDE

NO ADDITIONS 
SCENARIO -  
WRAP IMPORTS

NO ADDITIONS 
SCENARIO -  
WEST-WIDE

LOLPyear 0.6% 0.6% 69%

LOLPday 0% 0% 0.50%

LOLPhour 0% 0% 0.048%

LOLE (days/10yrs) 0.07 0.06 18.2

LOLH (hrs/yr) 0.01 0.02 4.23

EUE (MWh/yr) 8.96 19 13,797

EUEnorm (ppm) 0.0 0.09 19.4

EUE day
event

(MWh/loss-of-load-day)

1,280 3,243 7,597

EUE hour
event

(MW/loss-of-load-hour)

1,280 884 3,259

Though not fully comparable, these results are similar to the findings of 
the SERVM analysis of the Preferred System Portfolio conducted by CPUC 
Staff, which identified an LOLE of 0.023 days every 10 years and EUE = 2.09 
MWh/year.39 At a high level, this result demonstrates that portfolios of clean 
resources can make substantive contributions to resource adequacy—and 
that in the mid-2020s, resource adequacy in the West can likely be achieved 

39  Available at: https://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M451/K412/451412947.PDF

Though not fully comparable, these results 

are similar to the findings of the SERVM 

analysis of the Preferred System Portfolio 

conducted by CPUC Staff, which identified 

an LOLE of 0.023 days every 10 years and 

EUE = 2.09 MWh/year.  At a high level, 

this result demonstrates that portfolios 

of clean resources can make substantive 

contributions to resource adequacy—and 

that in the mid-2020s, resource adequacy 

in the West can likely be achieved without 

adding new fossil fuel resources.
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without adding new fossil fuel resources. While we found that the resource 
additions provided more capacity than was needed to achieve a one-day-in-
10-year standard for this particular system, it is important to contextualize that 
finding with the broader set of uncertainties that could affect the grid between 
now and 2026, including load uncertainty, resource retirement uncertainty, and 
climate uncertainty.

3.3 LESS COAL SCENARIO

To explore the potential impacts 
of continued acceleration of 
coal retirements in the West, we 
developed a Less Coal Scenario that 
further accelerates coal retirements 
beyond those already announced 
through 2026. The Less Coal Scenario 
incorporated the additions in CAISO 
from the California Additions Scenario 
and retired an additional 10.9 GW 
of coal resources from the resource 
stack so that none of the BAs 
modeled within the WRAP subarea 
had remaining coal. This left 8.0 GW 
of coal remaining primarily in WACM, 
PSCO, and TEPC.

FIGURE 3.19.

Resource composition in the Less Coal Scenario.

TABLE 3.10. 

Resource additions and retirements in the 
Less Coal Scenario, relative to the  

No Additions Scenario.

RESOURCE
NET WEST-WIDE  

ADDITIONS

Biomass MW +107

Geothermal MW +184

Wind MW +3,673

Utility-scale solar MW +11,000

Storage MW +12,749

Storage MWh +51,780

Coal MW -10,922

Total MW +16,791

ADVANCING RESOURCE ADEQUACY ANALYSIS WITH THE GRIDPATH RA TOOLKIT   |  73



3.3.1 WEST-WIDE ANALYSIS

Table 3.11 compares the loss of load statistics from the Less Coal Scenario to 
the No Additions Scenario. The Less Coal Scenario experienced fewer loss 
of load events than the No Additions Scenario, indicating that the resource 
adequacy contribution of the added resources in California exceeded that of 
the 10.9 GW of retired coal units. The system did not achieve a one-day-in-10-
year standard, but had a relatively small LOLE of 4.13 days every 10 years.

TABLE 3.11.

Loss of load metrics for the Less Coal Scenario, compared to the No Additions Scenario.

METRIC LESS COAL SCENARIO NO ADDITIONS SCENARIO

LOLPyear 29% ± 3% 69% ± 3%

LOLPday 0.11% ± 0.01% 0.50% ± 0.02%

LOLPhour 0.009% ± 0.001% 0.048% ± 0.001%

LOLE (days/10yrs) 4.13 ± 0.40 18.2 ± 0.8

LOLH (hrs/yr) 0.80 ± 0.06 4.23 ± 0.14

EUE (MWh/yr) 2,126 13,797

EUEnorm (ppm) 3.0 19.4

EUE day
event

(MWh/loss-of-load-day)

5,147 7,597

EUE hour
event

(MW/loss-of-load-hour)

2,650 3,259

Average Event Duration (hrs) 1.94 2.33

As shown in Figure 3.20, loss of load events were primarily experienced in 
August in this case, with a much smaller likelihood in July and September, 
and the vast majority of events (86%) were two hours or less. Unlike the No 
Additions Scenario, the Less Coal Scenario did see a small number of longer 
9-hour events.
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FIGURE 3.20.

Loss of load event timing and duration in the Less Coal Scenario.

 a
  

LOSS OF LOAD HOURS PER YEAR  b
  

EVENT DURATION DISTRIBUTION

Perfect capacity needs in the Less Coal Scenario were relatively small across all 
three of the RA standards listed in Table 3.12, and, as shown in Figure 3.21, were 
minimally affected by duration limitations.

TABLE 3.12. 

Perfect capacity needs in the Less Coal Scenario.

RA STANDARD
PERFECT CAPACITY NEED
IN LESS COAL SCENARIO

LOLE = One day in 10 years 3.3 - 4.2 GW

LOLPyear = 5% 4.9 GW

LOLH = 2.4 hrs/yr 0 GW

  No Additions - West-wide

  Less Coal Scenario

FIGURE 3.21.

Capacity and duration efficient 
frontier for the Less Coal 
Scenario, compared to the  
No Additions Scenario.
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Despite the retirement of almost 11 GW of 
coal resources, the Less Coal Scenario relied 
on additional batteries to eliminate most of 
the capacity shortages from the No Additions 
Scenario. Resource availability on an example 
day from the two scenarios is shown in Figure 
3.22. Panel A shows this day in the No Additions 
Scenario and panel B shows it for the Less Coal 
scenario. On this challenging day, storage charged 
early in the day and shifted energy to the evening, 
compensating for the reduced coal availability and 
reducing the amount of unserved energy. Notably, 
even after the coal retirements in the Less 
Coal scenario, the system did not appear to be energy-limited with plentiful 
resources available throughout the week to charge the storage and shift the 
needed energy to avoid shortages in the afternoon and evening.

FIGURE 3.22.

Load and resource 
availability on the 
same challenging day 
in the (a) No Additions 
Scenario and (b) Less 
Coal Scenario.
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eliminate most of the 

capacity shortages from 

the No Additions Scenario. 
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Regional dynamics also changed: in the Less Coal scenario, California, with 
its added resources, eliminated the lost load and became a net exporter 
51 percent of the hours in which it experienced unserved energy despite 
importing energy from the rest of the West in the No Additions Scenario. 
Import levels were much lower in the rest of the hours and RA events did not 
occur any other hours in California in the Less Coal scenario.

  No Additions Scenario

  Less Coal Scenario

FIGURE 3.23.

Net imports during loss of 
load hours in the Less Coal 
Scenario, compared to the 
No Additions Scenario.

3.3.2 SUBAREA ANALYSIS

The subarea analysis described in Section 3.1.5 was repeated for the Less Coal 
Scenario and is described in the following sections.

3.3.2.1 WRAP subarea

Table 3.13 lists the loss of load metrics for the WRAP subarea in the Less Coal 
Scenario under both the Island and Import policies described in Section 3.1.5. 
When WRAP was treated as an island, the Less Coal Scenario resulted in a very 
high likelihood of lost load—100% of the simulated years saw a shortage and 
the LOLE was 451 days every 10 years. However, adopting the Import Policy 
avoided nearly all of these shortages and resulted in loss of load risk in WRAP 
that closely aligned with the West-wide findings.
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TABLE 3.13.

Loss of load metrics for the WRAP subarea in the Less Coal Scenario, compared to  

West-wide loss of load metrics.

METRIC
LESS COAL - 

WRAP ISLAND 
LESS COAL -  

WRAP IMPORTS 
LESS COAL SCENARIO - 

WEST-WIDE

LOLPyear 100% 29% 29%

LOLPday 12.4% 0.11% 0.11%

LOLPhour 2.24% 0.009% 0.009%

LOLE (days/10yrs) 451 4.13 4.13

LOLH (hrs/yr) 196 0.80 0.80

EUE (MWh/yr) 275,929 2,118 2,126

EUEnorm (ppm) 808 6.2 3.0

EUE day
event

(MWh/loss-of-load-day)

6,116 5,128 5,147

EUE hour
event

(MW/loss-of-load-hour)

1,409 2,641 2,650

Average Event Duration (hrs) 4.34 1.94 1.94

Figures 3.24 and 3.25 show the timing and duration of events under the Island 
and Import policies for the WRAP subarea in the Less Coal Scenario. When 
WRAP was treated as an island, shortages were observed in all months, except 
March, and April, and could be very long in duration in both summer and 
winter seasons. However, many of these apparent challenges were alleviated 
by accounting for imports. In winter months and in many summer hours, there 
was enough excess generating capability in the rest of the West (and adequate 
transmission) to avoid most shortages in the WRAP subarea. The remaining 
shortages were very similar in timing and duration to those identified in the 
West-wide Less Coal Scenario (see Figure 3.20).
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FIGURE 3.24.

Loss of load event timing and duration for the WRAP subarea without imports in the Less Coal Scenario.

 a
  

LOSS OF LOAD HOURS PER YEAR  b
  

EVENT DURATION DISTRIBUTION

FIGURE 3.25.

Loss of load event timing and duration for the WRAP subarea with imports in the Less Coal Scenario.

 a
  

LOSS OF LOAD HOURS PER YEAR  b
  

EVENT DURATION DISTRIBUTION

ADVANCING RESOURCE ADEQUACY ANALYSIS WITH THE GRIDPATH RA TOOLKIT   |  79



Table 3.14 summarizes the perfect capacity 
needs under various RA standards for the 
WRAP subarea under both the Island and 
Import Policies in the Less Coal Scenario. 
Across all three RA standards, the WRAP 
Island case yielded capacity needs that were 
similar in size to the amount of additional 
coal retired. However, accounting for imports 
eliminated the majority of these needs. 
Depending on the RA standard, accounting 
for imports avoided about 6-7 GW of perfect 
capacity needs.

TABLE 3.14.

Perfect capacity needs for the WRAP subarea in the Less Coal Scenario, compared to the West-wide 
perfect capacity needs.

RA STANDARD

LESS COAL 
SCENARIO -  

WRAP ISLAND

LESS COAL 
SCENARIO -  

WRAP IMPORTS

LESS COAL 
SCENARIO - 
WEST-WIDE

LOLE = One day in 10 years 10.1 GW 3.8 GW 3.8 GW

LOLPyear = 5% 10.9 GW 4.9 GW 4.9 GW

LOLH = 2.4 hrs/yr 7.1 GW 0 GW 0 GW

Similar to the findings for the CAISO subarea in the No Additions Scenario, the 
difference between the capacity needs in the Island and Import cases was even 
greater as energy limitations were applied, as shown in Figure 3.26 for the 
one-day-in-10-years RA standard. In this case, accounting for imports not only 
reduced the capacity needs substantially, but also eliminated the sensitivity to 
solution duration. In this situation, imports offer a substitute for long duration 
solutions.

FIGURE 3.26.

Capacity and duration efficient 
frontier for the WRAP subarea, 
with and without imports,  
in the “Less Coal - West-wide. 

  Less Coal - West-wide

  Less Coal - WRAP Island

    Less Coal - WRAP Imports

Across all three RA 

standards, the WRAP Island 

case yielded capacity needs 

that were similar in size to 

the amount of additional 

coal retired. However, 

accounting for imports 

eliminated the majority of 

these needs.
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3.3.2.2 CAISO subarea

Table 3.15 lists the loss of load metrics for the CAISO subarea under both the 
Island and Import Policies in the Less Coal Scenario. Because the resources in the 
CAISO subarea in this scenario were identical to those in the California Additions 
Scenario, the CAISO Island Policy loss of load risk was identical to that in the 
California Additions Scenario. In this case, accounting for imports had very little 
impact, because loss of load risk was so small before accounting for imports.

TABLE 3.15.

Loss of load metrics for the CAISO subarea in the Less Coal Scenario, compared to West-wide loss of 

load metrics.

METRIC

LESS COAL  
SCENARIO -  

CAISO ISLAND

LESS COAL 
SCENARIO -  

CAISO IMPORTS

LESS COAL  
SCENARIO -  
WEST-WIDE

LOLPyear 0.6% 0.6% 29%

LOLPday 0% 0% 0.11%

LOLPhour 0% 0% 0.009%

LOLE (days/10yrs) 0.06 0.06 4.13

LOLH (hrs/yr) 0.02 0.007 0.80

EUE (MWh/yr) 19 3.4 2,126

EUEnorm (ppm) 0.09 0.02 3.0

EUE day
event

(MWh/loss-of-load-day)

3,243 559 5,147

EUE hour
event

(MW/loss-of-load-hour)

884 479 2,650

Average Event Duration (hrs) 3.67 1.17 1.94

3.3.2.3 Benefits of planning coordination

In the No Additions Scenario, we found that most of the benefits of full 
coordination across the West could be achieved if the CAISO subarea were 
to adopt the Import policy described in Section 3.1.5. However, in the Less 
Coal Scenario, capacity needs were much more sensitive to the import policy 
adopted for the WRAP subarea. This was because the CAISO subarea was 
adequate without imports while the WRAP subarea relied much more on 
imports due to the additional coal retirements. The importance of the WRAP 
subarea import policy is demonstrated for the 4-hr capacity needs in Table 3.16. 
In this case, all of the incremental benefits of full coordination between WRAP 
and CAISO could be achieved if the WRAP subarea adopted the Import Policy.
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TABLE 3.16.

4-hr capacity needs with various import policies adopted for the CAISO and WRAP subareas, 
compared to full coordination, in the Less Coal Scenario.

CAISO POLICY
WRAP 

POLICY
4-HR CAPACITY NEED IN  

CAISO + WRAP SUBAREAS
OVERBUILD  

LOWER BOUND

Island Island 14.8 GW 10.9 GW

Island Imports 3.9 GW 0

Imports Island 14.8 GW 10.9 GW

Imports Imports 3.9 GW 0

Full Coordination 3.9 GW -

Again, it is important to keep in mind that the subarea analyses each assume 
full coordination within their footprints, so the incremental benefit of full 
coordination across the footprints may be relatively small. If we were to 
calculate the potential overbuild without coordination within each subarea (i.e., 
each BA may be treated as an island or adopt an import policy), the benefits of 
full coordination would be much larger.

When taken together, the No Additions Scenario and Less Coal Scenario 
demonstrate that the benefits of adopting import policies can vary widely 
depending on the system. Our findings support the general intuition that the 
shorter a system is on its own, the more important it is for that system to 
account for imports. In the No Additions Scenario, the CAISO subarea is quite 
short and the WRAP subarea is nearly adequate on its own. To avoid overbuild, 
the priority is for the CAISO subarea to adopt a reasonable import policy. 
In the Less Coal Scenario, the relative positions have switched—the CAISO 
subarea is adequate on its own and the WRAP subarea is quite short—so the 
WRAP import policy is most critical for avoiding overbuild.
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Key Takeaways from the Less Coal Scenario

• The addition of the CPUC renewable and storage resources 
more than compensated for the retirement of the WRAP coal 
resources in the Less Coal Scenario, resulting in lower loss of 
load probability and smaller capacity shortages than the No 
Additions Scenario.

• The remaining shortages were primarily concentrated 
in August afternoons and evenings, and event durations 
remained relatively short with 92% of events lasting for 4 hours 
or less.

• The Less Coal system did not appear to be energy-limited, 
with plentiful resources available to charge storage outside of 
the critical system hours. Storage dispatch helped to eliminate 
a large fraction of the unserved energy events from the No 
Additions Scenario.

• Regional dynamics were fundamentally different, with 
California becoming a net exporter in the Less Coal scenario 
in 51% of the hours in which it experienced loss of load events 
despite importing energy from the rest of the West in the No 
Additions Scenario.
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4 

WEATHER-
SYNCHRONIZED 
SIMULATIONS



To further explore the nature of 
RA challenges in the West and the 
limitations of Monte Carlo analysis, 
we also conducted analysis of 
the No Additions Scenario using 
Weather-Synchronized Simulation. 
In this simulation, we tested the 
full synchronized record of load, 
wind, solar, and temperature 
conditions (2007-2020)40 across each hydro year for which data was available 
(2001-2020), resulting in 14 x 20 = 280 years of potential weather and hydro 
conditions. For each of the 280 sets of weather/hydro conditions, we tested 
30 years of potential forced outage conditions, generated using Monte Carlo 
Simulation with exponential failure and repair models.41 This resulted in 8,400 
years of potential conditions. To reduce runtimes, we first tested the 280 
years of weather/hydro conditions under extreme forced outage conditions, 
where total thermal capacity was derated by 10% relative to maximum output. 
We then ran the full 30 iterations only on those weeks in which lost load 
was observed under the extreme forced outage conditions. This reduced the 
number of weeks that had to be simulated in GridPath from 436,800 to 29,430.

4.1 NO ADDITIONS SCENARIO RESULTS

The Weather-Synchronized Simulation of the No Additions Scenario resulted in 
higher LOLE and LOLH than the Monte Carlo Simulation, larger shortages, and 
slightly longer event durations, although all events were still 8 hours or less 
(see Table 4.1). Interestingly, the Weather-Synchronized Simulation resulted in 
a lower LOLPyear than the Monte Carlo Simulation, suggesting that the Monte 
Carlo Simulation tended to distribute critical weather conditions more evenly 
across years (as opposed to concentrating them more into some weather years 
than others). This is not surprising, as the Markov Chain model only considered 
weather day transitions from one day to another, without accounting for 
longer term weather phenomena that could concentrate risk into particularly 
challenging seasons or years.

To investigate how sensitive these findings were to the particular weather 
years that were simulated, we also calculated loss of load metrics considering 
only those years for which wind data was available from the Wind Toolkit 
(2007-2014) and excluded the years over which we relied on synthesized 
wind data (2015-2020). These results are summarized in Table 4.1. In this 
test, we saw significantly lower RA risk (LOLE = 10.9 vs. 24.9 days every 10 
years) because extreme weather events occurred less frequently between 

40  This record includes some synthesized data, as described in Appendix C.
41  To investigate the relative importance of random forced outage modeling, the first of the 30 iterations used a simple capacity 
derate for each unit equal to its forced outage rate.

Despite the retirement of almost 11 GW 

of coal resources, the Less Coal Scenario 

relied on additional batteries to eliminate 

most of the capacity shortages from the 

No Additions Scenario.
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2007 and 2014 than they did between 2015 and 2020. This test confirms that 
Weather-Synchronized Simulations over limited historical time periods may 
not accurately reflect RA risks and it highlights the importance of expanding 
publicly available datasets to more years, especially hourly wind datasets. 
This test also suggests that RA analysis, using Weather-Synchronized or 
Monte Carlo analysis, may be highly dependent on the weather conditions 
experienced during the particular years for which high resolution data is 
available. We explore this sensitivity further with a statistical analysis across a 
much broader set of weather conditions in Section 4.3.

TABLE 4.1.

Loss of load metrics in the No Additions Scenario under Weather-Synchronized Simulation over 

different ranges of years, compared to Monte Carlo Simulation.

METRIC

NO ADDITIONS 
SCENARIO

(WEATHER-
SYNCHRONIZED 

2007-2020)

NO ADDITIONS 
SCENARIO 

(WEATHER-
SYNCHRONIZED 

2007-2014)

NO ADDITIONS 
SCENARIO 

(MONTE CARLO)

LOLPyear 61.9% 49.4% 69%

LOLPday 0.68% 0.30% 0.50%

LOLPhour 0.069% 0.028% 0.048%

LOLE (days/10yrs) 24.9 10.9 18.2

LOLH (hrs/yr) 6.02 2.43 4.23

EUE (MWh/yr) 20,365 5,965 13,797

EUEnorm (ppm) 28.6 8.4 19.4

EUE day
event

(MWh/loss-of-load-day)

8,171 5,449 7,597

EUE hour
event

(MW/loss-of-load-hour)

3,382 2,452 3,259

Average Event Duration (hrs) 2.41 2.22 2.33

The timing of events in the Weather-Synchronized Simulation over 2007-2020 
was similar to the Monte Carlo Simulation, except that more of the loss of load 
risk was concentrated in the most challenging hours of August. 
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FIGURE 4.1.

Loss of load event timing and duration in the No Additions Scenario under Weather-Synchronized 

Simulation.

 a
  

LOSS OF LOAD HOURS PER YEAR  b
  

EVENT DURATION DISTRIBUTION

Perfect capacity needs to meet a one-day-in-10-year standard in the Weather-
Synchronized Simulation covering 2007-2020 weather years were 11.1 GW, 
about 1.8 GW higher than in the Monte Carlo Simulation (which covers load 
years 2006-2020). When the years with synthesized wind data (2015-2020) 
were excluded from the Weather-Synchronized Simulation, identified capacity 
needs were much smaller (6.4 GW).

TABLE 4.2.

Perfect Capacity needs in the No Additions Scenario under Weather-Synchronized Simulation over 
different ranges of years, compared to Monte Carlo Simulation.

RA STANDARD

NO ADDITIONS 
SCENARIO
(WEATHER-
SYNCHRONIZED 
2007-2020)

NO ADDITIONS 
SCENARIO
(WEATHER-
SYNCHRONIZED 
2007-2014)

NO ADDITIONS 
SCENARIO
(MONTE CARLO)

LOLE = One day in 10 years 10.9 - 11.4 GW 6.3 - 6.6 GW 8.8 - 9.9 GW

To understand why the Weather-Synchronized Simulation identified greater RA 
risk than the Monte Carlo Simulation, we examined specific load circumstances 
in both the Weather-Synchronized Simulation and the Monte Carlo Simulation. 
Figure 4.2 shows the loss of load probability for each simulated load day in 
July - September 2020. Recall that in the Monte Carlo Simulation, these days 
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are randomly drawn many times 
throughout the simulation and 
each time they are paired with 
different wind, solar, and thermal 
conditions from similar weather 
days in the historical record. 
The LOLP corresponding to the 
Monte Carlo Simulation in the 
figure is equal to the number of 
times that unserved energy was 
observed when the specified load 
day was randomly drawn, divided 
by the total number of times 
that the load day was drawn. In 
the Weather-Synchronized Simulation, each day with synchronized weather 
conditions was tested across various hydro and forced outage conditions. The 
LOLP corresponding to the Weather-Synchronized Simulation in the figure 
is equal to the number of times that unserved energy was observed for the 
specified weather day, divided by the total number of hydro and forced outage 
iterations that were tested (20 hydro years x 30 forced outage iterations = 600 
total iterations for each weather day).

  Weather-Synchronized 
simulation

  Averaged across Monte Carlo 
load days

FIGURE 4.2.

Daily LOLP on example load 
days in Weather-Synchronized 
and Monte Carlo Simulations.

During the summer of 2020, there were three load days in which the Monte 
Carlo Simulation identified greater RA risk than the historical weather 
conditions suggested (8/3/2020, 8/25/2020, and 9/5/2020), but there were 
several more days in which the actual historical weather conditions yielded 
higher LOLP than the estimates provided by the Monte Carlo Simulation. This 
tendency of the Monte Carlo Simulation to underestimate risk on the most 
challenging load days was observed more generally across the simulated days. 
We found that mixing and matching load, wind, solar, and thermal conditions 
from days with similar, but not identical, weather in the Monte Carlo Simulation 

This tendency of the Monte Carlo Simulation 

to underestimate risk on the most challenging 

load days was observed more generally 

across the simulated days. We found that 

mixing and matching load, wind, solar, and 

thermal conditions from days with similar, 

but not identical, weather in the Monte Carlo 

Simulation tended to overestimate resource 

availability on those days.
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tended to overestimate resource availability on those days. Figure 4.3 and 
Figure 4.4 show this overestimation, averaged across the load days with non-
zero LOLP in the Weather-Synchronized Simulation (i.e., the “critical load 
days”). Notably, the resource availability overestimation was greatest in some 
of the hours of the day with the highest loss of load risk (HE 16 - HE 18) and 
the average overestimation in those hours was similar in size to the capacity 
shortage differences between the Weather-Synchronized and Monte Carlo 
Simulations.

FIGURE 4.3.

Resource availability on critical load days in Weather-Synchronized and Monte Carlo Simulations.

AVERAGE WIND 
AVAILABILITY ON CRITICAL 
LOAD DAYS (GW)

AVERAGE SOLAR 
AVAILABILITY ON CRITICAL 
LOAD DAYS (GW)

AVERAGE THERMAL BEFORE 
OUTAGES ON CRITICAL 
LOAD DAYS (GW)

  Monte Carlo

  Weather-
Synchronized

 Solar 

 Wind

  Thermal

FIGURE 4.4.

Average difference in resource availability on critical load days  
between Weather-Synchronized and Monte Carlo Simulations.

AVERAGE AVAILABILITY OVERESTIMATION BY  
MONTE CARLO SIMULATION ON CRITICAL DAYS (GW)

ADVANCING RESOURCE ADEQUACY ANALYSIS WITH THE GRIDPATH RA TOOLKIT   |  89



How well a Monte Carlo Simulation captures the 
risk on these critical days will depend on how 
the historical days are binned and what other 
measures are taken to account for correlations. 
Providing this type of simple shape analysis with 
a Monte Carlo Simulation may help planners 
contextualize Monte Carlo findings and provide 
a high level sense of the extent to which the 
Monte Carlo approach may be underestimating 
RA risk.

4.2 WEATHER INSIGHTS

One benefit of Weather-Synchronized 
Simulation is the ability to identify the coherent 
weather conditions, and the underlying physical 
weather phenomena that pose the greatest RA 
risk. At a high level, we find that temperature 
remains the key weather driver of loss of load 
risk in this system. Notably, the days with non-
zero loss of load probability see abnormally high temperatures in California 
and the days with the greatest loss of load probability also see abnormally 
high temperatures across most of the West. The events in August 2020 serve 
as an example of the most challenging type of weather phenomenon for 
near-term RA in the Western United States. The August 2020 heat event was 
uncharacteristically hot across most of the West from August 14th through 
August 19th, with the highest region-wide temperatures at the major load 
centers occurring on August 15th and 16th (see Table 4.3). The coincidence of 
unusually hot conditions at most load centers across the West during this event 
resulted in very high loss of load risk in the simulation. This event was driven 
by a weather phenomenon known as the West Coast Thermal Trough (WCTT), 
a self-reinforcing cycle that pushes air from the desert southwest northward 
between the Sierra/Cascades and the coast, which can bring coincident well-
above-average temperatures to California and Western Oregon/Washington. 
Figure 4.5 shows maximum daily temperatures, average daily cloud cover, 
and average daily 80-meter wind speeds across the West during four days in 
August 2020—a day before the arrival of the widespread heat event, two days 
during the heat event, and a day well after the event subsided.42 

42  All weather maps in this report were created with data from the NOAA High-Resolution Rapid Refresh (HRRR) analysis dataset, 
accessed via the HRRR Data Archive: AWS Open Data Program (https://mesowest.utah.edu/html/hrrr/)

This tendency of the 

Monte Carlo Simulation 

to underestimate risk 

on the most challenging 

load days was observed 

more generally across the 

simulated days. We found 

that mixing and matching 

load, wind, solar, and 

thermal conditions from 

days with similar, but not 

identical, weather in the 

Monte Carlo Simulation 

tended to overestimate 

resource availability on 

those days.

ADVANCING RESOURCE ADEQUACY ANALYSIS WITH THE GRIDPATH RA TOOLKIT   |  90

https://mesowest.utah.edu/html/hrrr/


August 2020 Weather Event Analysis
AUTHOR  |  Justin Sharp, Sharply Focused

The August 2020 heat event was a manifestation of a 
phenomenon known as the West Coast Thermal Trough 
(WCTT),43 a self-reinforcing cycle that has significant impacts on 
temperature, humidity and wind, most typically in the regions 
between the Sierra Nevada/Cascade Mountains and the West 
Coast.44 During these events, large scale weather conditions result 
in high pressure building to the east of the mountain barriers 
resulting in easterly flow across the mountains. This easterly 
flowing air is compressed as it descends off the mountains causing 
warming and an extension of the low pressure area that typically 
exists over the Desert Southwest due to the strong heating that 
is prevalent there; this further enhances the offshore flow and 
moves the trough northwards. Eventually, a trigger, such as a 

43  A trough is a local minimum in air pressure. A thermal trough is a pressure minimum created by locally relatively warm air.
44  Brewer, Matthew & Mass, Clifford & Potter, Brian. (2013). The West Coast Thermal Trough: Mesoscale Evolution and Sensitivity to 
Terrain and Surface Fluxes. Monthly Weather Review. 141. 2869-2896. 10.1175/MWR-D-12-00305.1.
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FIGURE 4.5.

Regional weather conditions before, during, and after the August 2020 heat event.
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weak weather system approaching the West Coast, pushes the 
trough inland and cool air floods inland from the ocean. The 
trough will then either migrate across the mountains and merge 
with the Great Basin thermal low, or recede back to California and 
dissipate. The process often results in the final warm day in any 
given location exhibiting the highest temperature of the event,45 
often followed by a sharp transition to cooler temperatures. 
Almost all heat waves in West Coast states are associated with 
the WCTT.  However, the orientation and extent of the WCTT is 
dictated by both large scale and local scale conditions, which 
produce significantly different outcomes because of the sharp 
contrast in marine and continental air mass characteristics. Some 
configurations allow for offshore flow to extend along the entire 
West Coast producing coincident heat at many or all major 
western load centers, especially in summer and early autumn.  
In other orientations, some combination of the San Diego area, 
LA Basin or the San Francisco Bay may experience much cooler 
onshore flow as the trough brings high temperatures to regions 
further north and/or inland, or the trough may never extend 
beyond southern Oregon before dissipating so that conditions at 
Pacific Northwest load centers remain mild. 

TABLE 4.3.

Maximum daily temperatures during August 2020 heat event.

SEA PDX SFO SMF LAX SAN PHX

8/12/2020 71°F 74°F 64°F 97°F 73°F 76°F 111°F

8/13/2020 75°F 78°F 83°F 100°F 83°F 84°F 115°F

8/14/2020 81°F 88°F 84°F 106°F 81°F 87°F 117°F

8/15/2020 88°F 99°F 86°F 109°F 87°F 85°F 114°F

8/16/2020 98°F 95°F 81°F 112°F 93°F 78°F 115°F

8/17/2020 88°F 93°F 81°F 105°F 78°F 83°F 115°F

8/18/2020 81°F 84°F 77°F 106°F 85°F 83°F 115°F

8/19/2020 83°F 87°F 77°F 101°F 85°F 82°F 115°F

8/20/2020 80°F 84°F 72°F 88°F 85°F 85°F 112°F

8/21/2020 71°F 78°F 75°F 92°F 81°F 85°F 100°F

The August 2020 event was complex in its details; major load 
centers in California, Oregon and Washington experienced 

45  The period leading up to this transition day is often also characterized by dry, windy, easterly flow conditions that bring greatly 
elevated wildfire risk, but provide little resource for generation at typical wind farm locations that are sited to capitalize on the more 
prevalent westerly flow regime.
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interspersed periods of cooler flow from the oceans, and hot 
flow descending from the mountains. However, coincident heat 
impacted most major load centers on August 15th and 16th. 
The event began on August 13th and the hottest day across 
California and Oregon load centers was August 15th, after 
which some coastal regions transitioned to onshore flow. The 
greatest coverage of the heat throughout California, Oregon, and 
Washington was August 16th, when Seattle reached 98°F (which is 
the second highest August day on record), and Olympia reached 
99°F.  The worst of the heat only lasted for one day in Washington, 
with temperatures moderating, though still remaining above 
normal, on August 17th. While some of the coastal California 
cities had cooled by a few degrees, the 16th was also the warmest 
day in several Central Valley locations including Sacramento and 
Fresno. August 18th and 19th saw further moderation with cooler 
air infiltrating further inland from the Bay Area northwards as 
the WCTT migrated inland and weakened. However, conditions 
became conducive to offshore flow again in southern California, 
with a larger portion of the LA Basin experiencing well above 
normal temperatures. This highlights the complexity that is often 
present during these events, where slight changes in the weather 
pattern can lead to profound differences in loads in major coastal 
and near coastal cities. By August 20th, the WCTT event had 
ended, along with the coincident heat from San Diego to Seattle. 
This is consistent with a reduction in the LOLP observed in both 
the Weather-Synchronized and Monte Carlo Simulations, despite 
continued well-above normal conditions in Southern California 
coastal cities.

There are significant and consistent correlations between this 
type of heat event and deviations from average wind and solar 
output. Most wind projects along the West Coast are sited to 
take advantage of the more prevalent onshore conditions (i.e., 
flow from ocean to land) in order to maximize energy production 
during more typical conditions. In these events, however, the flow 
shifts to offshore (i.e., from land to ocean), which is unfavorable 
for generation at most wind project locations, as can be seen in 
Figure 4.5. Offshore flow is also generally associated with clearing 
skies and strong solar resource performance. However, as the 
WCTT moves northwards, coastal load centers in California, where 
behind-the-meter solar is prevalent, typically transition to onshore 
flow, resulting in localized cooling and low clouds. This transition 
can also bring stronger winds to localized areas, as can be seen 
on August 18th and August 29th in Figure 4.5. This phenomenon 
underscores the importance of examining physically coherent 
weather across the West within RA analysis, as local conditions 
along the coast could have large and quickly shifting impacts on 
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load, distributed solar output, and wind production and may not 
be indicative of conditions elsewhere in the West. 

The August 2020 event illustrates complex relationships between 
power system variables across time and geography and reveals 
how challenging it can be to capture key weather correlations 
over large areas in RA analysis. Recall that the wind and solar data 
for 2020 in the Weather-Synchronized Simulation is synthesized 
based on historical generation in BPA and CAISO on these days 
(see Appendix C), so the simulated conditions do not exactly 
match the weather conditions described in this section. However, 
the synthetic shapes generally reflect the same weather regime 
along the West Coast as was experienced historically on these 
days. More complete publicly available datasets for energy system 
modeling would increase confidence that Weather-Synchronized 
Simulation captures all of these dynamics, especially as the system 
relies more heavily on wind and solar.

Days with more geographically isolated heat, which may result in very high 
load conditions in localized parts of the West, did not tend to pose loss of load 
risk in the modeled system due to geographical diversity. In general, most of 
these hot days exhibit many of the same meteorological features just discussed 
and a WCTT is often present. However, details in the antecedent conditions 
and the evolving pressure pattern can profoundly change where the dividing 
line between onshore and offshore flow is found, and the initial temperature 
distribution of the air mass also dictates how extreme the temperature 
evolution will become and where. Three examples are shown in Figure 4.6.

June 12th, 2019 was unusually hot in Portland (98°F) and Seattle (95°F) 
and interior California (Sacramento was 103°F) and the Southwest (112°F 
in Phoenix) were also warm. However it was relatively mild along coastal 
California load centers (72°F in Los Angeles, and 74°F in San Diego). During 
this event, Los Angeles and San Diego never transitioned to offshore flow, with 
temperatures peaking on the 10th at 80°F in LA and 77°F in San Diego. By 
the 12th, the flow was onshore along the entire California coastline and while 
the temperature on June 10th reached 97°F in San Francisco, on June 12th the 
high temperature only reached 79°F. July 16th, 2018 was also unusually hot in 
Seattle (92°F), Portland (98°F), and areas east of the Cascades and Sierras, but 
was less extreme along the California coast, with San Francisco experiencing 
the strongest onshore flow and a high of only 69°F while it was 79°F in Los 
Angeles and San Diego. The Southwest saw typical temperatures for this time 
of year (105°F in Phoenix), with cloud cover associated with monsoon rainfall. 
July 13th, 2020 saw extreme heat in the Desert Southwest (114°F in Phoenix) 
as well as the California Central Valley, but was marked by relatively mild 
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conditions across the Northwest (76°F in Seattle and 80°F in Portland) and 
cool and cloudy coasts.

Despite extreme heat occurring in parts of the West on each of these days, 
none of them saw loss of load risk in the Weather-Synchronized Simulation due 
to geographical load diversity.  It is important to note that this load diversity 
is weather driven, and that the same weather drives wind and solar resource 
availability. In particular, the phenomenon that drives high demand also drives 
low wind generation. As penetration levels increase, it will become more crucial 
to fully account for these dynamics in resource adequacy studies, and to use 
dynamically consistent and coincident weather data for all fields.

FIGURE 4.6.

Regional weather on days with localized heat but no simulated loss of load risk in the  
No Additions Scenario.
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4.3 STATISTICAL ANALYSIS

The synchronized weather case provides for more transparency into the 
relative drivers of RA risk via statistical analysis. To demonstrate this, we used 
logistic regression to estimate the loss of load probability on each simulated 
day as a function of the daily weather conditions (see Appendix E), number 
of daylight hours, hydro conditions, and whether the historical day fell on 
a weekend or weekday. Figure 4.7 compares the estimated LOLE using this 
approach to the LOLE based on Weather-Synchronized Simulation. The left 
panel shows each day in terms of a variable, w, which represents how strongly 
the day reflects the conditions that drive loss of load risk. The right panel 
compares the average LOLE between the Weather-Synchronized Simulation 
and the logistic regression estimate for each simulated year. More information 
about this analysis, including the steps taken to avoid overfitting, can be found 
in Appendix G.

  Estimated –  
Logistic Regression

  Simulated in 
GridPath

FIGURE 4.7 

Logistic regression 
estimates for the  
No Additions 
Scenario

The logistic regression confirmed that weather conditions—and temperature in 
particular—are by far the biggest driver of loss of load risk. 

FIGURE 4.8.

Logistic regression coefficients 
for the No Additions Scenario.

We also found that higher wind speeds at key locations around the West, in 
particular Wyoming and Montana, tended to reduce loss of load risk in the 
No Additions Scenario, however it is difficult to discern the extent to which 
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this was due to wind generation or correlations between temperatures and 
wind speeds. We did not find that including dew point and sea level pressure 
information yielded materially improved statistical model performance for 
this particular system. These findings are specific to this particular system and 
portfolio of resources. Temperature may be a less dominant driver for systems 
with greater penetrations of renewables, in which other weather conditions 
may play a larger role.

DAILY AND WEEKLY AVERAGE 
WEATHER COEFFICIENTS

FIGURE 4.9.

Weather coefficients in the logistic 
regression for the No Additions 
Scenario.

4.3.1 HISTORICAL WEATHER PATTERNS

In addition to providing information about the drivers of RA risk for a given 
system, this analysis can be used to estimate loss of load risk during conditions 
that were not directly simulated, either historical weather conditions or 
simulated future conditions under climate scenarios. As an example, we used 
the logistic regression model to estimate loss of load risk during the historic 
heat dome event in June 2021, which broke several high temperature records 
across the Northwest (116°F in Portland and 108°F in Seattle). Despite the 
historic heat in parts of the West on June 28, 2021 (see Figure 4.10), we 
estimated a loss of load probably of only 1.2% on this day because other parts 
of the West saw much milder conditions.
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MAX. DAILY TEMPERATURE

Source: NOAA High-Resolution 
Rapid Refresh analysis dataset
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 110-115°F
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 95-100°F
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 80-85°F

 <80°F

6/28/2021 (MONDAY)

ESTIMATED LOLP: 1 .2%

FIGURE 4.10.

Regional temperatures during the 
June 2021 heat dome event.

Because most RA analyses rely on historical weather to approximate future 
weather, we used the logistic regression model to examine potential RA risks 
over a much longer historical record, going back to 1949, to examine historical 
weather trends and their potential implications for RA analysis. Figure 4.11 
shows the LOLE calculated based on each historical weather year, averaged 
across the 20 hydro years.

  Estimated LOLE

  Simulated LOLE

FIGURE 4.11.

LOLE estimation using 
logistic regression model 
over historical weather 
conditions.

As shown in Figure 4.11, the statistical analysis revealed some critical weather 
conditions in the historical record that were not simulated, but were likely to 
have caused RA challenges. The figure also shows that prior to the 1990s, the 
statistical model suggested that the weather conditions resulting in RA risk 
occurred less frequently. This can also be seen in Figure 4.12, which shows w 
(an indicator of how extreme each historical day was with respect to those 
factors that drive loss of load risk) for every day in the historical record. Figure 
4.13 shows the same information, but zoomed in on the highest values in order 
to highlight the frequency of extreme events. More information about w can be 
found in Appendix G.
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w (AVERAGED ACROSS HYDRO YEARS) FIGURE 4.12.

Critical weather indicator, w, 
over the historical weather 
record.

w (AVERAGED ACROSS HYDRO YEARS) FIGURE 4.13.

Critical weather indicator, w, 
over the historical weather record 
(focusing on extreme events).

This trend in the frequency of critical weather has implications for RA analysis 
that uses historical weather data as a proxy for or indication of future weather 
conditions. Many RA analyses, including the Monte Carlo analysis used in 
this report, assume that future weather follows the distribution of weather 
conditions experienced over some historical period of time. Using the statistical 
model for the No Additions Scenario, we estimated the implications of this 
assumption across various historical 
weather records (see Figure 4.14). As 
more historical years were included in 
the analysis, and assumed to be equally 
likely as recent years, the lower the 
LOLE estimation became. While the 
observed trend suggests that it would 
be overly risky to assume that future 
weather conditions will reflect the 
distribution of weather across the last 70 
years, it is not immediately clear that a 
particular historical period is necessarily 
superior for this type of analysis. 
Without information about potential 
future weather, via climate modeling 
and downscaling, the decision to rely 

Without information about potential 

future weather, via climate modeling 

and downscaling, the decision 

to rely on historical weather and 

a particular number of years is 

effectively a policy decision. A risk 

averse planner might choose to plan 

as if future weather will look like 

the last 10 years and a planner with 

more risk tolerance might choose 

to plan as if future weather will look 

like the last 30 years.
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on historical weather and a particular number of years is effectively a policy 
decision. A risk averse planner might choose to plan as if future weather will 
look like the last 10 years and a planner with more risk tolerance might choose 
to plan as if future weather will look like the last 30 years.

Some RA analyses attempt to account for historical trends by detrending the 
weather data underpinning the analysis. We explore this strategy in Appendix 
F.5 and find that while weather detrending may yield more stable results (i.e., 
the RA risk is not as sensitive to the number of historical years considered), 
this strategy further abstracts from actual weather conditions and the physical 
phenomena that drive them and may not accurately reflect the types of 
weather events that could actually be experienced on the system and their 
probabilities.

LOLE (DAYS EVERY 10 YEARS)

     Estimated

 Simulated

FIGURE 4.14.

LOLE estimation over various 
periods of historical weather.

4.4 COMPARISON TO MONTE CARLO APPROACH

At a high level, we found that the nature of the identified RA challenge was 
similar between Weather-Synchronized Simulation and Monte Carlo Simulation, 
as long as data from recent weather years were included in the Weather-
Synchronized Simulation. The primary benefits of Weather-Synchronized 
Simulation over Monte Carlo were:

• Increased transparency into the physical weather conditions that drive RA 
risk

• Increased confidence in the accuracy of relevant weather correlations, 
both temporal and spatial

• The ability to derive statistical models based on lower resolution weather 
data to estimate RA risk during events for which high resolution weather 
data may not be available, including historical events or simulated future 
events under climate scenarios.
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The primary drawback of Weather-Synchronized Simulation was its sensitivity 
to the specific weather years being simulated, which was exacerbated when 
the analysis was limited to publicly available high resolution wind data (2007-
2014).

In Appendix F, we compare convergence behavior between the Monte Carlo 
and Weather-Synchronized Simulations and we test other modeling decisions 
to gain additional methodological insights. In this analysis, we found:

• The Monte Carlo analysis converged a bit more quickly than the Weather-
Synchronized Simulation (in terms of the number of years simulated 
and the uncertainty in the resulting RA metrics), but this improved 
computational performance came at the cost of accuracy for this 
particular system. See Appendix F.1 and Appendix F.2.

• Modeling several iterations of forced outages across the 280 weather/
hydro year combinations in the Weather-Synchronized Simulation did not 
materially impact the RA metrics, but did reduce the uncertainties in those 
metrics. For this system, estimating forced outages using derates equal 
to unit forced outage rates yielded reasonable estimates for LOLE and 
capacity need. This finding is specific to this particular system and may 
not hold for systems that are smaller relative to thermal unit sizes. See 
Appendix F.2.

• Modeling a single hydro year rather than 20 hydro years may not 
accurately capture hydro-related risk and did not offer material 
computational benefits for this system (e.g., improved convergence or 
precision). See Appendix F.3.

• Testing different combinations of weather conditions with weekend or 
weekday load patterns did not materially impact annual RA metrics. 
Using the statistical model, we estimated that increases in identified risk 
for challenging weather days that historically fell on weekends would be 
roughly offset by decreases in identified risk for challenging weather days 
that historically fell on weekdays. See Appendix F.4.

Key Takeaways from the Weather-Synchronized Simulation

• A Weather-Synchronized approach to RA analysis has a 
number of benefits over Monte Carlo Simulation to provide 
confidence that physically accurate weather conditions with all 
relevant correlations are captured. However, data availability 
remains a key limitation.

• Weather-Synchronized Simulation yielded similar RA metrics 
to Monte Carlo Simulation, provided that weather conditions 
from recent years (2015-2020) were tested.
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• Weather is the most important driver of RA challenges and the 
treatment of weather trends is a key determinant of RA risk 
level.

• The availability of more high-resolution historical power 
system data as well as information about likely future weather 
conditions would greatly improve our understanding of the RA 
challenge.

• Statistical analysis can be used to estimate RA metrics 
associated with weather conditions for which high resolution 
data may not be available, including historical weather or 
simulated future weather under climate scenarios.
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5 

CONCLUSIONS 
AND NEXT 
STEPS



This initiative introduces the GridPath RA Toolkit—a publicly available resource 
adequacy analysis toolkit for the Western United States that leverages public 
data sets and the open-source model GridPath—and applies the Toolkit 
towards an independent and transparent evaluation of the state of resource 
adequacy in the Western United States in 2026. This report documents our 
insights regarding the relative strengths and weaknesses of RA modeling 
methodologies in the context of a modern, highly interconnected power 
system.

5.1 WESTERN US CASE STUDY FINDINGS

In the No Additions Scenario, which incorporates planned retirements, but 
excludes planned resources through 2026, we estimate that the West could 
be physically short by about 8.8 - 9.9 GW in 2026, if planning to a one-day-in-
10-year LOLE standard. We find that event durations are relatively modest and 
the economically optimal duration for RA solutions is unlikely to exceed 3 or 
4 hours. The identified shortage is much smaller than the amount of capacity 
additions in current utility plans in the West, including the procurement 
ordered in CPUC Decision D.21-06-035, which requires 11.5 GW of new net 
qualifying capacity through 2026. Incorporating capacity additions consistent 
with California’s Preferred System Plan through 2026 eliminates all but seven 
RA events in 1,000 years of simulated dispatch.

Additional coal retirements do not pose an insurmountable RA challenge in 
the near term if California utilities procure the quantities of clean resources 
set forth in California’s Preferred System Plan. In the Less Coal Scenario, the 
deployment of additional batteries and renewable resources in California 
appears to mitigate much of the needs associated with the retirement of 
an additional 11 GW of coal elsewhere in the West, even before considering 
capacity additions from utility plans outside of California. We estimate perfect 
capacity needs of about 3.8 GW for this case and find that short-duration 
solutions are likely adequate as the majority of RA shortages were 4 hours or 
less and occured in the evenings on hot summer days. Energy-limited resources 
such as batteries or demand flexibility are well suited to this type of shortage. 
The system does not appear to be energy-limited, with plentiful resources 
available to charge storage outside of the high-risk hours and shift the needed 
energy to avoid shortages in the afternoon and evening.

Due to the highly interconnected nature of the West, resource adequacy 
analysis that treats a particular RA planning footprint as an island can distort 
the observed RA challenges and may lead to suboptimal RA solutions, 
including potentially significant overbuild. Even without full West-wide 
planning coordination, RA programs may benefit from adopting market access 
policies that are informed by West-wide analysis in order to properly account 
for interregional operational interactions. In the No Additions Scenario, the 
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capacity needs associated with the CAISO footprint were reduced by about 
3 GW by accounting for market access. And in the Less Coal Scenario, the 
capacity needs associated with the WRAP footprint were reduced by over 6 
GW by accounting for market access. In both cases, accounting for market 
access also significantly reduced event durations, highlighting the potential 
for load and resource diversity across large areas to help mitigate energy 
shortages in the near-term.

5.2 METHODOLOGICAL FINDINGS

The Weather-Synchronized RA methodology developed for this report can 
provide a transparent analysis of resource adequacy challenges and metrics 
and reveal how weather and weather trends impact those metrics. Unlike 
Monte Carlo Simulation, which mixes and matches load, wind, and solar 
conditions in a manner that may not be physically realistic, the Weather-
Synchronized approach tests historical weather conditions. It can therefore 
provide a much more transparent assessment of the drivers of RA risk. The 
Weather-Synchronized simulation revealed that actual extreme weather 
days tended to carry more risk than extreme days arising from Monte Carlo 
simulation. How well a Monte Carlo-based analysis captures the risk on the 
most challenging days will depend on subjective simulation design decisions, 
such as weather binning methodologies or other approaches to estimating the 
effects of correlated weather phenomena. Despite the benefits of Weather-
Synchronized Simulation, this approach can be highly sensitive to the years for 
which synchronized high resolution load, wind, solar, and thermal derate data is 
available and these datasets are limited.

Statistical models can also be derived from the results of Weather-
Synchronized Simulations in order to estimate loss of load risk during 
conditions for which high resolution synchronized data may not be available, 
including historical conditions or future weather conditions derived from 
climate modeling. The statistical analysis in this study suggests that weather 
conditions—temperature in particular—are the most important factors 
influencing loss of load risk in the West in the near term. It also suggests 
that weather trends in recent years may have implications for RA analyses 
that leverage historical data to estimate future weather conditions. Without 
information about potential future weather, via climate modeling and 
downscaling, the decision to rely on historical weather and a particular number 
of years is effectively a policy decision. 

Regardless of the RA analysis approach, the availability of more historical data 
on load, wind, solar output, and thermal derates would improve the accuracy 
of the analysis. In particular, the lack of wind data in the NREL WIND Toolkit 
for recent historical years (after 2014) is a key limiting factor for capturing the 
weather-driven correlations of these variables with a higher level of confidence. 

ADVANCING RESOURCE ADEQUACY ANALYSIS WITH THE GRIDPATH RA TOOLKIT   |  105



Generating more wind data is a high priority. As weather is a key determinant 
of RA risk and weather trends pose questions about the reliance on the 
historical record for assessing future RA risk, the availability of data for future 
weather can further improve our understanding of how to plan for reliable 
future energy systems.

5.3 FUTURE WORK

This study provides a useful foundation for future RA analysis. We’ve identified 
the following priorities for future RA analysis using the methodologies 
described in this report or other tools:

• Climate sensitivities. This study demonstrates that the historical weather 
record does not offer a stable distribution of conditions for use in RA 
studies. We do not have a strong understanding of how future weather 
patterns may impact loss of load risk. However, the statistical analysis 
approach described in this study may offer a relatively simple approach 
to probing this question. The statistical model for LOLP described in 
Section 4.3 could be applied to daily average weather conditions from 
downscaling climate models, rather than the historical record, to estimate 
LOLP in the study year. This would require simulated weather conditions 
at the same locations as were used to develop the statistical model and 
would require several years of potential weather conditions for the year 
2026.

• Electrification scenarios. Because this study focuses on near-term RA, 
it relies on relatively simple estimates of future weather-sensitive load 
shapes based on historical trends. For longer-term studies, these estimates 
are less valid, especially in the context of electrification. To conduct 
longer-term studies, additional focus must be placed on the weather-
sensitivity of electrified loads and the associated impacts on load shapes.

• Weather-driven outages. While temperature-dependent thermal derates 
are considered in this study, correlated outages driven by weather patterns 
are not. Future work to assess the importance of these common mode 
generator failures is dependent on the availability of data to describe the 
relationship between outage probability distributions and weather.

• LSE or RA program modeling. This study uses a physical representation 
of the Western United States to determine the physical capabilities of the 
system. This approach can be used to quantify physical RA challenges, 
but it cannot be used to allocate responsibility for RA to individual load 
serving entities or RA programs. Such an exercise would require ownership 
and contractual information for all of the resources contributing to 
meeting load in the LSE or RA program footprint, some of which may be 
confidential. However, with this ownership and contractual information, the 
dataset and model developed for this study can be used to conduct LSE, 
or RA program-specific analysis in a manner that is fully consistent with 
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the broader dynamics and constraints across the West during the periods 
that are most challenging for RA. 

Finally, a core purpose of this initiative was to develop an advanced, publicly 
available and transparent toolkit for resource adequacy analysis that will 
contribute to the broader resource adequacy dialogue across the US. Our hope 
is that a broad set of users will leverage the GridPath RA Toolkit to further 
advance resource adequacy analysis for emerging power systems. 
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TECHNICAL 
APPENDICES



APPENDIX A.  
LOAD AND RESOURCE AVAILABILITY MODELING DETAILS

A.1 LOAD SHAPES

Hourly historical load data was obtained from FERC Form 714 for respondents 
in WECC over the years 2006-2020 and was mapped to the WECC BAAs 
based on load shapes in the 2026 Common Case. All data was adjusted to 
Pacific Standard Time, which in some cases required manual adjustments. 
Manual adjustments were also applied to remove outliers via visual inspection 
and in specific cases where we could find documentation of a load shedding 
event in the historical record. In these circumstances (listed in Table A.1), the 
shed load was added back to the historical load to more closely reflect demand 
during the period.

TABLE A.1. 

Historical load adjustments due to load shed events.

DATE BAA MAX OUTAGE (MW) CAUSE

9/20/2015 CISO 150 Plant outage + Local Import Limit46

9/12/2016 PNM 150 Transmission outage47

2/2/2011 SRP 300 Many - cold weather event48

2/2/2011 EPE 523 Many - cold weather event

2/3/2011 EPE 250 Many - cold weather event

2/4/2011 EPE 250 Many - cold weather event

8/14/2020 CISO 1,072 Many - heat event49

8/15/2020 CISO 698 Many - heat event

Some BAA load shapes were approximated as linear combinations of the FERC 
respondent load shapes. This approach was used to better align load shapes 
with the 2026 Common Case load zone topology (especially in cases where 
multiple LSEs are in the same Common Case load zone) or to estimate loads 
in BAAs where there were large and/or abrupt changes in load in the historical 
record that could not be readily adjusted to reflect conditions in the study 
year. This could have been caused by a change in the footprint for a given 
respondent or the loss or gain of a very large load within a relatively small 

46  https://www.nerc.com/pa/rrm/ea/energyemergency/EEA3_Report_20150920_SDGE.pdf
47  https://www.nerc.com/pa/rrm/ea/energyemergency/EEA3_Report__PNM_20160912_Disturbance.pdf
48  https://www.nerc.com/pa/rrm/ea/February%202011%20Southwest%20Cold%20Weather%
49  http://www.caiso.com/Documents/Final-Root-Cause-Analysis-Mid-August-2020-Extreme-Heat-Wave.pdf
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system sometime during the historical record.50 For these BAAs, we estimated 
the hourly load shape as a linear combination of the loads in other nearby 
BAAs. We selected the linear coefficients that resulted in load shapes that 
yielded the closest alignment between the estimated historical load in 2009 
and the 2009 load shapes available in the 2026 Common Case. These load 
approximations are summarized in Table A.2.

TABLE A.2.

Load shape calibration to the WECC 2026 Common Case 2009 load shapes.

BAA
RESPONDENT LOADS  
IN LINEAR COMBINATION REASON

BANC SMUD, MID, constant Combining multiple respondents into single load zone

BPAT BPA, constant Adjusting for a persistent difference between 2009 BPA load in 
FERC Form 714 and 2009 BPAT load in 2026 Common Case.

LDWP LDWP, constant Adjusting for a persistent difference between 2009 LDWP load in 
FERC Form 714 and 2009 LDWP load in 2026 Common Case.

NEVP NEVP Adjusting for a persistent difference between 2009 NEVP load 
in FERC Form 714 and 2009 NEVP load in 2026 Common Case, 
potentially due to VEA.

PNM PNM, TSGT, PSC, constant Combining multiple respondents into single load zone

TEPC APS, PNM, SRP, TEP, constant Adjusting for a persistent difference between 2009 TEPC load in 
FERC Form 714 and 2009 TEP load in 2026 Common Case.

VEA NEVP VEA data not available from FERC Form 714

WACM PSC, constant Abrupt change in load trend in recent years

WALC APS, constant Multiple abrupt changes in load in the historical record

WAUW NWE, constant Abrupt change in load early in the historical record

Figure A.1 shows two examples of the linear load estimations summarized 
in Table A.2. In both cases, the 2009 historical load from FERC Form 714 
had a similar shape, but was out of alignment with the 2009 load shapes 
in the Common Case, suggesting a difference in the boundaries between 
the Common Case load zones and the reporting areas of the FERC Form 
714 respondents. In both cases, using a linear combination resulted in load 
shapes that were based on the FERC Form 714 data (and could therefore be 
developed for the other historical years), but also aligned with Common Case 
load data that was available.

50  Manual adjustments were made to the CHPD load shape to remove demand associated with the Wenatchee Works Aluminum 
Smelter in December 2015.
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BPA AVG. HISTORICAL 
LOAD (GW) AUGUST 2009

PNM AVG. HISTORICAL 
LOAD (GW) AUGUST 2009

  FERC Form 714

  Linear Combination

  2009 Common Case

FIGURE A.1.

Examples of calibration 
to the WECC 2026 
Common Case 2009 
load shapes.

Some load zones in the Common Case represent only part of the footprint for 
the associated FERC respondent, specifically those in CAISO, Idaho Power, and 
PacifiCorp’s BAAs. For these load zones, we used the 2009 load shapes in the 
2026 Common Case to derive month-hour specific allocation factors for each 
load zone and applied these allocation factors to the FERC Form 714 data.

To transform the historical hourly load shapes to the study year, we first binned 
the historical load data by month, hour ending (HE), and weekdays versus 
weekends. Within each bin, j, we express the load on each day, i, as a function 
of various daily weather indicators (Xi), the historical year that the day falls 
within (yi), a normalized measure of the total annual real GDP of the Western 
states in that year (zyi), a constant (kj), and a residual term (ε):

lij = Aj Xi
2+Bj Xi + cj yi + dj zyi  + kj + εij

The daily weather indicators (Xi) were derived for each bin by performing 
Y-aware principal component analysis (PCA) on the weather data described in 
Appendix E for each of the days in the bin and selecting enough components 
to explain 85% of the variance. We used linear regression to solve for the 
coefficients in each bin, Aj, Bj, cj, dj, and kj, and we calculate the residual for each 
day associated with the linear model: 

εij = lij - AjXi
2 - Bj Xi - cj yi - djzyi - kj

To estimate the load in the study year, lij
2026, we apply this linear model to the 

same weather conditions, but we update the year to 2026 and the GDP to a 
forecasted value for 2026:

lij
2026 = Aj Xi

2 + Bj Xi + 2026 × cj + dj z2026 + kj + εij

lij
2026 = lij + (2026-yi) × cj + (z2026 - zyi) × dj
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The historical real GDP across the Western United States in 2006-2020 was 
obtained from the Bureau of Economic Analysis51 and the real GDP across the 
Western United States in 2026 was forecasted by applying the national percent 
GDP growth from 2020 to 2026 from the 2021 EIA Annual Energy Outlook.52 
The resulting values of z are shown in Figure A.2.

NORMALIZED ECONOMIC INDICATOR, z FIGURE A.2.

Normalized economic indicator 
used in load shape adjustment.

Figure A.3 summarizes the West-wide loads resulting from the load 
transformation using some high level metrics, and compares them to the 
historical West-wide loads. In each plot, the 2026 dots represent the min, 
maximum, and average annual metrics associated with the load across the 
15 weather years transformed to 2026 economic conditions. The blue dots 
represent the actual historical values. The transformed data generally represent 
a continuation of the trends observed in the historical record, but also 
reflect the wide variation in load across the weather years. In some cases, for 
example the annual peak load and the average load during August HE 19, the 
transformed data appears to be less extreme than the trend might suggest. 
In these cases, the trend in the historical data may be significantly influenced 
by a trend in weather conditions. Because the load transformation assumes 
the same weather conditions as were experienced historically, it does reflect 
changes in load that may be associated with weather trends. More discussion 
of weather trends and their implications for resource adequacy analysis can 
be found in Section 4.3. In other metrics, specifically the average load during 
August HE 12, the transformed load seems to accelerate the historical trend. 
In this case, we are seeing the effects of continued rooftop PV buildout, which 
offset potential increases in load due to the weather and other factors.

51  Annual GDP by State, SAGDP tables,  available at: https://apps.bea.gov/regional/downloadzip.cfm
52  U.S. Energy Information Administration, Annual Energy Outlook 2021. Macroeconomic Indicators table, available at: https://www.
eia.gov/outlooks/aeo/tables_side.php
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FIGURE A.3.

Comparison of 2026 transformed load statistics to historical data.

ANNUAL AVERAGE LOAD (GW)

AUGUST HE 19  
AVERAGE LOAD (GW)

ANNUAL PEAK LOAD (GW)

AUGUST HE 12  
AVERAGE LOAD (GW)

 Max

 Average

 Min

A.2 THERMAL GENERATOR AVAILABILITY

The maximum hourly output from all thermal units (including coal, gas, nuclear, 
biomass, and biogas) is estimated as a function of temperature using the 
following methodology.

For each unit, the maximum output in each hour was estimated by a unit-
specific piecewise linear function of temperature, as shown in Figure A.4(a). 
To derive this piecewise linear function, we examined the hourly load shape 
of the BA to which the unit was assigned to identify the “peak hours” in the 
winter and summer, the four hours of the day in each season with the highest 
average load, over which net capacity testing may have occurred. We then 
assigned the net winter and summer capacities from EIA Form 860M to the 
average temperatures over these hours in 2019 at the project site and assumed 
linear changes in maximum output at temperatures between these two points. 
At temperatures above the average summer peak hours temperature at the 
site, we derated capacity by 0.7% of nameplate per degree Celsius, a simple 
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approximation based on information from GE53 and Wartsila54. At temperatures 
below the average winter peak hours temperature, we held the maximum 
output constant.

FIGURE A.4. 

Thermal derate curve approach and resulting availability before outages.

 a  b

This approach results in correlations between temperature-driven loads and 
thermal resource availability, as illustrated in Figure A.4(b), which shows the 
total hourly availability of all thermal units in CAISO in a test simulation, before 
accounting for forced outages, as a function of the CAISO load.

Forced outages were applied to each unit after calculating the hourly 
maximum output. Forced outages were applied randomly within Monte Carlo 
Simulation using exponential failure and repair models with parameters tuned 
to achieve a unit-specific forced outage rate (FOR) and mean time to repair 
(MTTR). Random unit forced outages were assumed to be independent and 
uncorrelated. For units that could be mapped to the WECC 2026 Common 
Case, forced outage parameters from the Common Case were used. For all 
remaining units, weighted-average forced outage parameters by technology 
type from the Common Case were used, which are listed in Table A.3.

53 Brooks, Frank J., GE Power Systems, “GE Gas Turbine Performance Characteristics,” https://www.ge.com/content/dam/gepower-
new/global/en_US/downloads/gas-new-site/resources/reference/ger-3567h-ge-gas-turbine-performance-characteristics.pdf
54 Wartsila, “Combustion Engine vs Gas Turbine: Derating due to Ambient Temperature,” https://www.wartsila.com/energy/learn-
more/technical-comparisons/combustion-engine-vs-gas-turbine-derating-due-to-ambient-temperature
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TABLE A.3.

Weighted average outage parameters applied to unmapped units.

TECHNOLOGY
WEIGHTED AVERAGE 

FORCED OUTAGE RATE
WEIGHTED AVERAGE 

MTTR (HRS)

Biomass 3.4% 38

Coal 4.7% 38

GasCC 3.3% 34

GasCT 3.0% 51

GasIC 3.3% 37

GasST 3.4% 40

Geothermal 3.1% 24

Nuclear 3.1% 298

Other 4.4% 41

In the dispatch simulation, thermal generators are assumed to be committed in 
all time steps in which they are available (i.e., not experiencing a forced outage) 
under the assumption that system operators have some advance notice 
when a capacity shortage may be imminent. As with other resource types, 
scheduled maintenance is not reflected in the simulation as it is assumed that 
maintenance will be scheduled for periods with a very low risk of encountering 
a shortfall. We also do not apply energy limitations to thermal units. The 
scenarios investigated in this study do not exhibit significant energy shortages, 
but we flag this as an important area of further investigation in future studies, 
especially where fuel constraints or emissions regulations may materially affect 
the availability of thermal resources.

A.3 HYDROPOWER

Hydro resources across the West vary widely in their operational 
characteristics, availability, storage, and non-power-related constraints. 
Because of the complexity and diversity of hydro resources as well as 
interactions between hydro resources that exist on the same river system, 
hydropower availability was estimated in aggregate within each BAA based 
on historical operations. The aggregated dispatch of hydro resources within 
each BAA was simulated within the dispatch optimization based on minimum 
output, maximum output, and weekly energy budget constraints. 

Aggregated weekly energy budgets were derived from historical monthly 
hydro generation data 2001 to 2020 (including hydro with storage, run-of-
river hydro, and pumped storage hydro) in each BAA from EIA Form 923/906. 
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The historical record showed indications of trends in hydro generation over 
time. To account for these trends, we detrended the hydro data for each BAA 
and month and projected to the study year of 2026 using a simple linear 
regression. We also bounded the adjusted energy by the historical maximum 
observed energy across all months to avoid non-physical hydro conditions. 
The resulting projected energy budgets (expressed as average output) are 
shown for January and August in CAISO and BPA in Figure A.5 and Figure A.6, 
respectively.

FIGURE A.5.

CAISO hydro trend adjustments.

CAISO HYDRO TREND ADJUSTMENT 
JANUARY AVG OUTPUT (GW)

CAISO HYDRO TREND ADJUSTMENT 
AUGUST AVG OUTPUT (GW)

  Unadjusted

  Projected  
to 2026

In the figures, the observed and adjusted linear trends are represented by 
dotted lines. Figure A.5 shows that the average hydro generation in January 
months in CAISO tended to decline over the period from 2001 to 2020. The 
hydro adjustment therefore reduces the January hydro budgets corresponding 
to the earlier years quite significantly so that the slope of the hydro budget 
is flat over time (dotted green line). The unadjusted and adjusted trend lines 
meet at the study year (2026) so that the mean hydro budget across the entire 
adjusted dataset is equal to the projected mean hydro budget in 2026 based 
on the linear trend in the historical dataset. The same type of adjustment can 
be seen for August, although historical generation in August had a much less 
dramatic trend over the years.
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FIGURE A.6.

BPA hydro trend adjustments.

BPA HYDRO TREND ADJUSTMENT
JANUARY AVG OUTPUT (GW)

BPA HYDRO TREND ADJUSTMENT
AUGUST AVG OUTPUT (GW)

  Unadjusted

  Projected  
to 2026

BPA hydro trends differ significantly from CAISO hydro trends, with generation 
in both January and August tending to increase over 2001-2020. In this case, 
the hydro detrending process increases hydro budgets for the earlier years, 
more dramatically in January than in August.

To derive minimum and maximum output constraints for the aggregated 
hydro in each BAA, we used historical hourly hydro data to investigate the 
relationship between the average generation over a given week and the 
minimum and maximum output over the course of the week. Because hourly 
historical hydro generation was not available for every plant or BAA, we 
adopted a number of approximations in this process, in particular outside of 
CAISO and BPA.

For CAISO, we used historical hourly hydro data from the CAISO Daily 
Renewables Watch between April 2010 and January 2021. For each week, 
we calculated the minimum, maximum, and average hydro output. These are 
plotted in Figure A.7. We then binned each week based on its average hydro 
output and for each bin, we calculated the 15th percentile of the minimums and 
the 95% of the maximums (shown in dark green and dark blue, respectively). 
We then fit curves to these points. The minimum points were fit to a quadratic 
function and the maximum points were fit to a logarithmic function. We 
also identified a range over which application of these functions seemed 
reasonable. For CAISO, this range was 12.9-63.8% of nameplate for both the 
minimum and maximum functions. To ensure feasibility below this range, 
maximum output constraints were assumed to be the maximum of the energy 
budget and the maximum output associated with the 12.9% threshold and 
minimum output constraints were assumed to be the minimum of the energy 
budget and the minimum output associated with the 12.9% threshold. The same 
approach was applied for energy budgets above the 63.8% threshold.
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FIGURE A.7.

Hydro minimum and maximum output constraint derivation.

CAISO HYDRO MIN/MAX  
CONSTRAINT DERIVATION

BPA HYDRO MIN/MAX 
CONSTRAINT DERIVATION

For BPA, we used historical hourly hydro generation from the BPA Total 
Load and Wind Generation Report from 2007-2020. We used the same 
methodology described above for CAISO, except the 5th percentile of the 
binned data was used to estimate the minimum values and the 90th percentile 
of the binned data was used to estimate the maximum values. For BPA, the 
resulting functions were applied over the range 32.2-63.4% of nameplate 
capacity for the minimum output and 28.8-63.4% for the maximum output. 
Outside of this range, we used the same approach described above to ensure 
feasibility.

To benchmark this approach, we compared the estimated minimum and 
maximum constraints to historical generation when the West was constrained. 
Figure A.8 shows this comparison for hydro resources in CAISO over the month 
of August 2020. The green shaded area highlights August 14th and 15th, when 
CAISO experienced rolling blackouts due to supply shortages. This exercise 
suggests that the hydro constraints may slightly underestimate the capabilities 
of the CAISO hydro fleet when the system is constrained. 

CAISO HYDRO BENCHMARKING (GW) FIGURE A.8. 

CAISO hydro constraint benchmarking  
to historical generation. 

  Aug 14-19

  Historical Output

  Simulation Min

  Simulation Max
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The same period is shown for BPA hydro in August 2020 in Figure A.9. While 
the maximum output constraint aligns well with the maximum output during 
the week of the heat wave, the historical output ramped up to that level 
over the course of about four days, rather than being available during the 
most critical periods on August 14th and 15th. This could have been due to 
a combination of factors, including forecast errors, scheduling constraints 
(August 15th and 16th fell on the weekend, which can complicate scheduling), 
and transmission congestion on COI. The difference between the capability 
of the hydro fleet and its actual dispatch during this critical period is an 
important reminder that operational modernization must accompany resource 
development to achieve reliability of supply in an efficient manner.

Outside of CAISO and BPA, we relied on hourly data for 46 hydro projects in 
the year 2005, which was available through WECC and represented 44% of 
the remaining hydro in the No Additions Scenario, to derive the minimum and 
maximum functions for the BAs listed in Table A.4.

BPAHYDRO BENCHMARKING (GW)

  Aug 14-19

  Historical Output

  Simulation Min

  Simulation Max

FIGURE A.9. 

BPAhydro constraint benchmarking  
to historical generation.
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TABLE A.4. 

Hydro minimum and maximum constraints.

BAA
MINIMUM 

FUNCTION
APPLICABLE 

RANGE
MAXIMUM 
FUNCTION

APPLICABLE 
RANGE

% OF HYDRO 
MW WITH 
HOURLY 

DATA

AVA 0.035 0-100% 0.50ln(x)+1.40 12-41% 74%

BANC 1.59x2-1.11x+0.28 45-82% 0.59ln(x)+1.33 21-82% 68%

CHPD 0.02 0-100% 0.34ln(x)+1.10 30-57% 30%

GCPD 3.13x2-2.72x+0.67 43-61% 0.83 0-100% 99%

PACW 2.11x2-0.73x+0.12 17-36% 0.34ln(x)+1.09 13-58% 67%

TH_Mead 
(Hoover)

0.01 0-100% 0.27ln(x)+1.17 5-23% 100%

TIDC 1.19x2-0.80x+0.13 39-113% 0.27ln(x)+1.16 4-113% 91%

WACM 3.98x2-1.64x+0.26 21-40% 0.35ln(x)+0.91 18-40% 89%

WALC 0.43x2-0.06x+0.04 5-67% 0.39ln(x)+1.26 5-50% 60%

We then grouped all of the hydro projects in the No Additions Scenario 
based on whether they were assigned to CAISO, assigned to BPA, or had 
hourly generation information in 2005 from WECC. For these projects, we 
aggregated the energy budgets and applied the associated minimum and 
maximum functions so that the dispatch optimization could solve for the 
hourly dispatch within the specified ranges. For all other projects, we made the 
conservative assumption of fixing hydro output based on the energy budget 
— effectively treating these projects as run-of-river. This approximation will 
tend to underestimate the capabilities of the hydro fleet. Table A.5 shows the 
nameplate capacity that fell into each of these categories by BAA. In total, 
73% of the hydro fleet (in terms of nameplate capacity) was represented by 
the minimum and maximum functions, while 27% of the fleet was represented 
by flat dispatch based on the energy budget. Note that some of the hydro 
incorporated into the minimum and maximum functions may be run-of-river. In 
that case, the limited flexibility of those plants is reflected in the historical data 
and will influence the minimum and maximum constraints accordingly (i.e., will 
tend to tighten them or bring them closer to the average output). Similarly, 
forced outages are implicitly captured to the extent that they have reduced the 
historical output that is used to derive the maximum output function.
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TABLE A.5.

Breakdown of hydro modeling approach by aggregated hydro resource.

BAA
MW WITH MIN/MAX 

FUNCTION
MW MODELED  

AS FIXED TOTAL MW

AVA 834.7 297 1131.7

AZPS 0 40 40

BANC 1743.8 817.2 2561

BPAT 20464.4 202.2 20666.6

CHPD 588 1358.8 1946.8

CIPV 6600.2 0 6600.2

CISC 1696.4 0 1696.4

CISD 0 56.6 56.6

DOPD 0 696.6 696.6

GCPD 2175.6 16 2191.6

IID 0 82.6 82.6

IPFE 0 92.4 92.4

IPMV 0 479.9 479.9

IPTV 0 1541.6 1541.6

LDWP 0 1928.6 1928.6

NWMT 0 735.7 735.7

PACW 561.1 276.7 837.8

PAID 0 342.2 342.2

PAUT 1.5 104.5 106

PAWY 0 2.9 2.9

PGE 0 694.2 694.2

PNM 0 23.6 23.6

PSCO 0 382.5 382.5

PSEI 0 406.6 406.6

SCL 0 1958.3 1958.3

SPPC 0 17.8 17.8

SRP 0 243.4 243.4

TH_Mead 2078.8 0 2078.8

TIDC 125.3 12.2 137.5

TPWR 0 835.4 835.4

WACM 2521.5 322 2843.5

WALC 254.8 169.5 424.3

WAUW 0 173.1 173.1

Total 39,646 (73%) 14,310 (27%) 53,956
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A.4 WIND POWER

The hourly availability of wind resources was estimated on a site-specific basis 
using 80-m wind speed data from the NREL WIND Toolkit over 2007-2014 
and empirically-derived logistic function power curves that were tuned to 
best match project-specific historical monthly generation data from EIA Form 
923/906. 

Three different methodologies were applied based on the amount of available 
historical generation data. For projects that came online prior to 2014 and 
that had overlapping periods with historical monthly generation and hourly 
simulated wind speed data, we calibrated the power curve to minimize the 
root mean square error of the associated monthly generation (Method 1). 
For projects that came online after 2014 and had adequate historical data to 
estimate an average historical capacity factor, we calibrated the power curve 
to achieve that average capacity factor across the 2007-2014 simulation period 
(Method 2). For projects that did not have adequate historical data to estimate 
an average capacity factor (very recent projects or projects under construction 
as of February 2021), we estimated the average capacity factor based on the 
zone and commercial online date (COD) and calibrated the power curve to 
achieve this capacity factor (Method 3). Some projects were not represented 
well by the empirical power curve or did not have enough data to fit a curve. 
For these projects, we assumed that the hourly shape was the same as the 
aggregated shape for the BAA to which they were assigned.

Table A.6 summarizes the amount of wind capacity over which each method 
was applied and compares the average historical capacity factors over the 
various project-specific calibration periods to the simulated capacity factor 
over 2007-2014 for each BAA for the projects that utilized any of the three 
methods.
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TABLE A.6.

Breakdown of wind simulation methodologies applied by aggregated wind resource.

BAA
METHOD 1

(MW)
METHOD 2

(MW)
METHOD 3

(MW)
NONE
(MW)

SIMULATED 
CAP FACTOR 
(2007-2014)

HISTORICAL  
CAP FACTOR  

(VARIOUS PERIODS)

AVA 105.3 0 144 0 38.5% 37.6%

AZPS 227.3 0 0 0 23.4% 22.3%

BPAT 4573.6 466.8 361.3 6 28.2% 28.0%

CIPB 116.2 131.9 57.5 0 36.7% 36.1%

CIPV 1135.9 10.9 164.6 33.9 30.3% 29.5%

CISC 3181.6 524.5 186.9 241.2 26.2% 26.1%

CISD 315.4 144 0 0 25.1% 24.1%

EPE 0 0 249.8 0 38.9% 38.9%

IPFE 79.2 0 0 0 35.6% 35.4%

IPMV 326.9 0 0 115 30.0% 29.5%

IPTV 45 50 0 100.7 31.1% 30.9%

LDWP 440.5 0 0 0 23.0% 22.5%

NWMT 630.7 139.4 160 1.8 36.5% 35.8%

PACW 508 10 40 0 28.1% 27.4%

PAID 411.3 0 0 0 33.5% 32.4%

PAUT 18.9 65.3 0 0 28.2% 28.2%

PAWY 1336.1 80 2787.1 58.4 33.6% 33.5%

PNM 496.4 842.8 306.2 0 38.3% 38.2%

PSCO 2141.1 1133.4 970.1 6 37.3% 36.6%

PSEI 705.3 0 136 4.3 29.4% 28.8%

SPPC 150 0 0 0 23.5% 21.0%

TEPC 60.4 30 0 0 26.9% 26.7%

WACM 218.5 325 382.5 0 40.5% 40.2%

WALC 0 0 350 0 22.0% 22.0%

Total 17,224
(61%)

3,954
(14%)

6,296
(22%)

567
(2%)

31.7% 31.3%
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To further benchmark this approach, we used it to estimate the total hourly 
wind generation in CAISO and BPA in 2013 and compared it to reported actuals 
in the Daily Renewables Watch and the BPA Total Load and Wind Generation 
Report, respectively. We found that the approach tended to underestimate 
wind power output in both systems, and had an hourly rms error of 10.2% 
of nameplate for CAISO and 11.2% of nameplate for BPA. As can be seen in 
Figure A.10 and Figure A.11, which show the comparisons for August 2013, the 
approach generally captures the timing and magnitude of wind events and 
diurnal trends. Differences between the historical and the simulated data could 
arise due to a number of factors, including: differences between the resources 
included in the Daily Renewables Watch and BPA Report and the resources 
listed in EIA Form 860M that are assigned to CAISO and BPA, differences 
between the beginning of metered operations and the commercial operation 
dates listed in EIA Form 860M, numerical weather simulation uncertainties 
in NREL’s WIND Toolkit, and uncertainties in the power curve estimation 
approach. Given all of these potential sources of error and the reliance on 
publicly available information, we determined that the observed error was 
acceptable for the purposes of this study.

CAISO WIND BENCHMARKING (GW) FIGURE A.10.

CAISO wind benchmarking  
to historical generation.

  Simulated

  Historical

BPA WIND BENCHMARKING (GW) FIGURE A.11.

BPA wind benchmarking  
to historical generation.

  Simulated

  Historical
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A.5 SOLAR POWER

The hourly availability of solar resources was estimated on a site-specific basis 
using weather data over 1998-2019 from the National Solar Radiation Database 
(NSRDB). Output from each solar resource was simulated using NREL’s 
System Advisor Model (SAM). For each project, the inverter loading ratio was 
estimated based on the project commercial operation date (COD) and market 
trends reported in LBNL’s Utility-Scale Solar Data Update: 2020 Edition (see 
Figure A.12). Where fixed versus tracking information was not available, we 
simulated output under both configurations and took a weighted average of 
the resulting shapes with weights based on the project COD and market trends 
reported in LBNL’s Utility-Scale Solar Data Update: 2020 Edition (see Figure 
A.12).

INVERTER LOADING RATIO BY COD PERCENT TRACKING BY COD

  Historical median, LBNL

  Adopted Assumption

FIGURE A.12.

Solar project specification 
estimates by commercial 
online date (COD).

For fixed tilt systems, we estimated the tilt angle based on the historical 
weighted average tilt angle as a function of latitude as reported by EIA.55

55  Available at: https://www.eia.gov/todayinenergy/detail.php?id=37372#:~:text=Most%20utility%2Dscale%20fixed%2Dtilt,U.S.%20
Energy%20Information%20Administration%20(EIA)
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For hybrid resources with solar PV 
components, solar power availability 
was simulated in SAM with an inverter 
loading ratio of 1 to avoid suboptimal 
clipping. Solar thermal projects were 
modeled in SAM using the default 
parabolic trough and power tower 
configurations with thermal storage 
where specified in publicly available 
project information.

To benchmark this approach, we used 
it to estimate the hourly generation 
from solar resources in CAISO 
between 2017 and 2019, based on 
resource CODs in EIA Form 860M, 

and we compared it to reported solar generation from the CAISO’s Daily 
Renewable Watch. We found that the performance varied by month. Average 
solar capacity factors were slightly underestimated in June–August and slightly 
overestimated in other months. The root-mean-square errors of the hourly 
simulated capacity factors for each month were smallest during summer 
months and largest during the spring. Figure A.13 shows the simulated and 
historical data across the month of September 2017. This month began with 
a strong heat wave, leading to peak demand conditions on September 1. On 
this day, the simulated shapes slightly underestimate solar availability relative 
to historical actuals. Throughout the rest of the month, the simulated shapes 
generally reflect the day-to-day-variations observed in historical solar output.

TABLE A.7.

Fixed tilt solar tilt angle estimates  
by latitude.

LATITUDE ESTIMATED TILT ANGLE

20-25 16

25-30 18

30-35 20

35-40 22

40-45 23

45-50 27
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TABLE A.8.

Solar estimation error in 2017 - 2019.

MONTH
MONTHLY AVERAGE CAPACITY 

FACTOR ERROR
ROOT-MEAN-SQUARE ERROR OF 

HOURLY CAPACITY FACTOR

 1 +0.5% 5.1%

2 +0.9% 6.7%

3 +1.2% 7.2%

4 +1.2% 8.0%

5 +0.6% 6.7%

6 -0.9% 4.2%

7 -1.2% 3.7%

8 -1.0% 3.8%

9 +2.2% 3.5%

10 +1.4% 4.5%

11 +1.3% 6.0%

12 +1.2% 5.8%

2017-2019 +0.6% 5.6%

CAISO SOLAR BENCHMARKING (GW)

  Simulated

  Historical

FIGURE A.13. 

Solar benchmarking to 
historical generation.

Differences between the historical and the simulated data could arise due to a 
number of factors, including: differences between the resources included in the 
Daily Renewables Watch and the resources listed in EIA Form 860M that are 
assigned to CAISO, differences between the beginning of metered operations 
and the commercial operation dates listed in EIA Form 860M, numerical 
weather simulation uncertainties in the National Solar Radiation Database, 
solar output simulation uncertainties in SAM, and differences between actual 
project specifications and the approximations that we employed in SAM. Given 
all of these potential sources of error and the reliance on publicly available 
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information, we determined that the observed error was acceptable for the 
purposes of this study.

A.6 BATTERY STORAGE

Battery dispatch is modeled endogenously by GridPath. Batteries are 
associated with three variables in each hour of the simulated week: the 
charging level, the discharging level, and the energy available in storage. 
The first two are constrained to be less than or equal to the battery’s power 
capacity, and the third is constrained based on the battery’s duration. The 
model tracks the state of charge in each hour based on the charging and 
discharging decisions in the previous hour, with adjustments for charging and 
discharging efficiencies. Battery system availability is modeled with a fixed 3.5% 
derate in all hours to approximate forced outages. We did not simulate random 
battery unit forced outages because we did not have enough information about 
the nature of battery forced outages (effective unit sizes and mean time to 
repair) and we expected unit sizes to be very small relative to the size of the 
system.

A.7 HYBRID RENEWABLES

The dispatch of hybrid projects, e.g., solar and battery hybrids, is modeled 
endogenously in GridPath. We model the batteries in these systems as being able 
to charge from the solar or wind component only and not from the grid. We track 
power availability from the renewable resource via an hourly capacity factor 
parameter and the model determines the amount of power that goes directly 
to the grid and the amount that is stored. The former is limited by the power 
capacity of the renewable component and the latter by the charging power 
capacity of the battery. The model tracks the state of charge of the battery. Total 
grid power output from the project (from the renewable component and from 
storage discharging) is constrained by an interconnection limit.
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APPENDIX B.  
MONTE CARLO SIMULATION DETAILS

The Monte Carlo approach employed in this study synthesizes several years 
of plausible hourly load, wind availability, solar availability, and temperature-
driven thermal derate data over which the system operations can be simulated. 
Synthetic days are built by combining load, wind, solar, and temperature derate 
shapes from different but similar days in the historical record. The first step in 
this process is to bin historical days by month and their weather conditions. 
Each bin contains multiple days of data with respect to each variable and those 
days share similar characteristics. To synthesize a plausible day of conditions, 
the model randomly selects load, wind, solar, and thermal derate days from 
within the same bin and combines the conditions across the variables. To 
preserve geographical correlations, the same day is selected for all sites or 
locations associated with each variable. For example, the model might combine 
the load from August 13th, 2012 with the solar availability from August 27th 
2011, the wind availability from August 31st, 2007, and the thermal derates from 
August 16th, 2015 because these days all fall within the same August weather 
bin. In this example, the loads across the entire system reflect conditions on 
August 13th, 2012 and the availability across all solar projects reflects the 
conditions on August 27th, 2011. Load days are also binned by weekend and 
weekday.

B.1 WEATHER BINS

For this study, we designed weather bins to capture the weather phenomena 
across the West that drive net load in the study year. This is a complicated 
exercise because weather patterns across such a large geographic area are 
complex and diverse. To characterize the weather in the West, we collected 
daily average weather data (LIST) at 16 locations across the West, each chosen 
for its proximity to a load center and/or a strong wind or solar resource. More 
information about the historical weather data can be found in Appendix E. To 
reduce this complex system down to relatively simple parameters that could 
be used to categorize each day, we used Y-aware principal component analysis 
(PCA) of the historical weather data and partitioned days based on their 
percentiles with respect to the first two principal components. This process is 
described in more detail below.

1. First, we calculated the weather-based hourly net load (load minus 
wind minus solar minus temperature-driven thermal availability) for all 
historical weekdays for which hourly data was available across all the 
variables (2007-2014).

2. For each historical day with hourly net load data, we calculated a daily 
net load score intended to reflect the potential to experience energy and 
capacity shortages on that day: the average of the daily average net load 
and the daily maximum net load.
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3. We then pulled daily weather variables representing conditions across the 
West (see Appendix E for more information) for those same days. 

4. We partitioned the days by month and within each month, we performed 
Y-aware PCA to reduce the N-dimensional weather data down to two 
dimensions:

a.  We normalized the daily weather variables so they had mean 0 and 
standard deviation 1 to prepare for PCA.

b.  We then conducted Y-aware PCA on the normalized daily weather 
variables with the daily net load scores. This process involved scaling 
each normalized weather variable by the slope of the daily net load 
score with respect to that normalized variable and then performing 
PCA on the scaled data. This approach places more emphasis on 
weather variables that may impact unserved energy and it results 
in orthogonal “weather modes” that can be used to partition the 
days based on weather. We also adjusted the signs of the principal 
components so that they pointed in the direction of increasing net load 
score.

c.  We then transformed each day into the coordinate system defined by 
the first two principal components.

Figure B.1 shows the first principal component for August and the relationship 
between the coordinate with respect to this component and the daily net load 
scores. The same is shown for January in Figure B.2. The analysis suggests that 
the most challenging days in August from a net load perspective are likely to 
have very high temperatures in the Central Valley California, relatively high 
temperatures in the Pacific Northwest, and relatively still wind conditions at key 
locations in the Pacific Northwest and California.

AUGUST FIRST PRINCIPAL COMPONENT FIGURE B.1. 

First weather principal component for August 
and relationship to daily net load score.

The most challenging January days appear to be colder than usual across 
the West, especially in the Pacific Northwest, with relatively high pressure 
conditions everywhere but California and the Desert Southwest. However, 
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unlike August, none of the January days have a daily net load score exceeding 
zero, suggesting that January may not see material West-wide resource 
adequacy challenges in this study.

JANUARY FIRST PRINCIPAL COMPONENT FIGURE B.2. 

First weather principal component for January 
and relationship to daily net load score.

5. With the two-dimensional weather data, we then partitioned the data 
based on percentiles with respect to each dimension. This exercise was 
subjective, but based on a couple of key observations and principles. 
We found that the first principal component generally explained about 
2 times more of the variance in the weather conditions than the second 
component, so we decided to break the data into more bins with respect 
to the first component (4 bins) than the second (2 bins). We also wanted 
to ensure that the bins representing the most extreme conditions 
contained enough days to ensure a variety of potential combinations, 
but not so many days that dramatically different weather conditions 
were being lumped together into the same bin. For this study, we sought 
to ensure that the most extreme bin included at least about 10 days 
across the synchronous record (2007-2014). We also observed that the 
historical data contained about 160-180 weekdays per month. Given 
these observations and priorities, we decided to first split the data in half 
based on whether each day was above or below the median coordinate 
with respect to the second principal component and then within each 
set of days, further partition the data based the percentile with respect 
to the first principal component with cutoffs at 90%, 75%, and 50%. The 
resulting bins are shown for August weekdays between 2007 and 2014 in 
Figure B.3. In the left panel, each day is shown in the coordinate system 
of the first two principal components to show how the partitioning into 
bins occurs. The right panel shows the same information that is shown in 
the right panel of Figure B.1, but with each day colored based on its bin 
assignment.
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FIGURE B.3. 

Weather binning across first two weather principal components.

B.2 SIMULATION DETAILS

After binning the historical data, each simulated year was developed via the 
following process:

1. We randomly drew the hydro conditions for the year from the historical or 
trended hydro record

2. We initialized the weather conditions with a randomly selected December 
day. The weather bin corresponding to the selected day was considered 
the prior weather bin for the first day of the year.

We then looped through 364 days (i.e., 52 weeks) for each simulated year 
and for each day, we:

a.  Randomly selected a historical day in the month for which the 
previous day’s weather conditions were in the prior weather bin. The 
weather bin corresponding to this selected day became the current 
weather bin. This Markov chain approach helped to ensure that 
the day-to-day weather transitions were consistent with historical 
observations.

b.  Determined whether the day was a weekday or weekend day (the day 
type) based on the study year calendar.

c.  Randomly selected solar, wind, and thermal derate shapes from within 
the current weather bin.

d.  Randomly selected a load shape from the subset of the days in the 
current weather bin that corresponded to the day type (weekend or 
weekday); and

e.   Set the prior weather bin equal to the current weather bin before 
proceeding to the next day.
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In this study, forced outages and weather-based availability were modeled 
independently. However, in future work, the forced outage rate could itself be 
weather-driven and synthesized for each day using the methodology described 
above. This would require information that relates the probability of forced 
outages to weather conditions.
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APPENDIX C.  
DATA SYNTHESIS FOR THE WEATHER-SYNCHRONIZED 
SIMULATION

For the purposes of demonstrating the Weather-Synchronized Simulation 
approach, we chose to synthesize thermal, wind, and solar data using day 
matching to expand the coherent weather record to 2007-2020. 

1998
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2020
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2019

2007 2007 2007 2007
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(synthesized)

2020 (syn) 2020 (syn)

FIGURE C.1. 

Historical and synthetic data 
used in Weather-Synchronized 
Simulation mode.

For each day in 2015-2020, we estimated hourly wind conditions by selecting 
the day in 2012-2014 that provided the closest match based on hourly historical 
wind generation in BPA and CAISO. Candidate day matches were limited to 
days in the same month or the month before or after the day to be matched. 
And the best match was selected by minimizing the root mean square error 
of the historical hourly wind capacity factors in BPA and in CAISO between 
the matching days. Historical hourly capacity factors in BPA and CAISO were 
estimated based on hourly generation data from the BPA Total Load and Wind 
Generation Report and the CAISO Daily Renewables Watch, respectively, as well 
as commercial online date information for projects included in each report. Even 
though wind generation data was available before 2012, we limited the candidate 
days to 2012-2014 because the rapid development of wind projects prior to 2012 
led to less stable historical capacity factor estimates in those years.

An example of this day matching approach is shown in Figure C.2 for August 
14, 2020. The closest matching wind day to August 14, 2020 across CAISO and 
BPA was September 13, 2012. On both days, CAISO wind output fell during 
the day to very low levels and increased somewhat during the evening hours, 
while BPA wind stayed very low throughout the day. We therefore use the wind 
shapes from September 13, 2012 to estimate the wind shapes for August 14, 
2020 in the synthesized dataset.
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CAISO HISTORICAL WIND BPA HISTORICAL WIND

  Day to match:  
August 14, 2020

  Best matching day:  
September 13,2012

FIGURE C.2.

Example day 
matching results.

We applied similar approaches to synthesize solar and thermal derate data for 
2020. We estimated the hourly solar shapes by selecting the day in 2018-2019 
that provided the closest match based on hourly historical solar generation in 
CAISO. And we estimated the hourly temperature by selecting the day in 1998-
2019 that provided the closest match based on daily average temperatures at 
the 16 locations across the West for which we had daily average weather data.
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APPENDIX D.  
DISPATCH MODELING DETAILS

To perform the dispatch modeling, we use GridPath, an open-source, versatile 
platform for power system planning and optimization developed by Blue 
Marble Analytics. We use GridPath to perform weekly optimizations with 
an hourly resolution over a wide range of system conditions. Each week is 
optimized independently and the model has perfect foresight for the whole 
week.  The objective function used in this study is to minimize total unserved 
energy over the week plus the largest hourly capacity shortage experienced 
during the week.

GridPath has additional functionality not utilized in this study but that could be 
part of future RA studies including:

• Economic commitment and dispatch (this study minimizes unserved 
energy)

• Multi-stage commitment and scheduling (this study assumes perfect 
foresight)

• Flexibility constraints such as ramp rates and min up & down times (this 
study does not enforce flexibility constraints)

• Capacity expansion, including policy constraints such as renewable 
portfolios standards or carbon targets (this study does not optimize 
resource selections)

• RA contractual layer (this study models physical system only)

More information about gridpath is available at https://www.gridpath.io. The 
codebase can be found on GitHub at https://github.com/blue-marble/gridpath. 
Extensive documentation is available at https://gridpath.readthedocs.io/en/
latest/. 

D.1 CONTINGENCY OBLIGATIONS

Contingency obligations are modeled across four reserve-sharing groups 
— the Western Power Pool (WPP), the Southwest Reserve Sharing Group 
(SWSG), the California Independent System Operation (CAISO), and the Los 
Angeles Department of Water and Power (LADWP)—each with a contingency 
obligation equal to 6% of its load in each hour. The reserve sharing groups and 
BAAs included in each group are listed in Table D.1.
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TABLE D.1. 

Reserve sharing groups.

RESERVE-
SHARING GROUP BAAS

WPP AVA, BANC, BPAT, CHPD, DOPD, GCPD, IPFE, IPMV, IPTV, NEVP, NWMT, PACW, PAID, 
PAUT, PAWY, PGE, PSCO, PSEI, SCL, SPPC, TIDC, TPWR, WACM, WAUW

SRSG AZPS, EPE, IID, PNM, SRP, TEPC, WALC

CAISO CIPB, CIPV, CISC, CISD, VEA

LADWP LDWP

We allow coal and gas as well as hydro and battery resources located within 
each reserve-sharing group’s BAAs to contribute toward the respective 
contingency obligation requirement.

D.2 TRANSMISSION REPRESENTATION

To convert from a nodal to a zonal representation, we made the following 
approximations:

• There are no transmission constraints within each Balancing Area. Flows 
are only modeled between Balancing Areas.

• Branches that connect Balancing Areas are aggregated into single lines 
where possible. Branches that are part of an interface (i.e., subject to path 
limits) are modeled individually when necessary to track interface flows 
and enforce interface constraints.

• To account for intra-Balancing Area branches that are part of an 
interface that crosses a Balancing Area boundary, we apply the following 
approximation: we use a recursive search algorithm to identify the subset 
of adjacent branches within 10 nodes of the intra-BA interface branch. 
Any branches within that subset that cross a BA-BA boundary determined 
to be part of the interface are modeled explicitly and are included in the 
associated interface constraints. A few remaining branches were manually 
allocated to interfaces.

We explicitly model transmission losses by applying a constant loss factor of 2 
percent on transmission line flows.
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APPENDIX E.  
HISTORICAL WEATHER DATA

In both the Monte Carlo weather binning process and the statistical analysis 
that accompanies the Weather-Synchronized Simulation, we rely on historical 
weather data at various locations across the Western US. We selected the 
weather data (both the weather variables and sites) to maximize the number 
of years for which data could be obtained while also taking into consideration 
weather factors that may be related to regionally resource adequacy. The 
weather sites, which are listed in Table E.1, were selected because of their 
proximity to load centers and/or strong wind or solar resources as well as the 
availability of a long and consistent historical weather record. 

Daily Global Surface Summary of the Day files were downloaded from 
the National Centers for Environmental Information (NCEI) as far back as 
1936.56 Most sites required pulling data from multiple station IDs, as station 
ID conventions have changed over time and some sites required multiple 
nearby stations to produce a complete record. For each site, we combined 
data from the station IDs listed in Table E.2. If overlapping data was available 
from multiple stations on the same day, we prioritized the station listed first 
in the table. We then inspected the combined data and kept only days for 
which at least 85% of the four weather variables across the sixteen sites had 
records. This yielded 26,579 days of weather data between December 1948 and 
October 2021. Table E.1 lists the percentage of days with missing data for each 
weather variable across this record. For these days, we filled in missing data 
using weighted k-Nearest Neighbor imputation. 

56  Global Surface Summary of the Day - GSOD, National Centers for Environmental Information, NESDIS, NOAA, U.S. Department 
of Commerce, available at: https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day
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TABLE E.1. 

Key findings using 30 forced outage iterations, compared to a forced outage derate approximation.

DATA COVERAGE (12/19/1948 - 10/4/2021)

SITE
STATION 
ID(S) TEMPERATURE DEW POINT

SEA-LEVEL 
PRESSURE WIND SPEED

Albuquerque 
International Airport, 
NM

72365023050,
99999923050

100.0% 100.0% 99.9% 100.0%

Blythe, CA 74718823158,
99999923158

79.1% 79.1% 79.0% 79.1%

Casper Natrona 
County Airport, WY

72569024089,
99999924089

98.3% 98.3% 98.2% 98.3%

Colorado Springs 
Municipal Airport, CO

72466093037,
99999993037

100.0% 100.0% 99.9% 100.0%

Dallesport Airport, 
WA

72698824219,
99999924219

89.0% 88.9% 88.9% 89.0%

Edwards Air Force No 
Additions, CA

72381023114 91.6% 91.6% 91.5% 91.6%

Fresno Yosemite 
International Airport, 
CA

72389093193,
99999993193

99.0% 99.0% 99.0% 99.0%

Harry Reid 
International Airport, 
NV

72386023169,
99999923169

98.6% 98.6% 98.6% 98.6%

Los Angeles 
International Airport, 
CA

72295023174,
99999923174

100.0% 100.0% 100.0% 100.0%

Lewiston Airport, MT 72677624036,
99999924149

99.9% 99.9% 94.7% 99.9%

Portland International 
Airport, OR

72698024229,
99999924229

100.0% 100.0% 99.9% 100.0%

Phoenix, AZ
(Phoenix Airport and 
Phoenix Luke Air 
Force No Additions)

72278023183,
99999923183,
72278523111,
99999923111

100.0% 100.0% 99.9% 100.0%

Sacramento Airport, 
CA

72483023232,
99999923232

100.0% 99.8% 97.4% 100.0%

San Francisco 
International Airport, 
CA

99999923234,
72494023234

100.0% 100.0% 100.0% 100.0%

Seattle, WA
(Seattle Tacoma 
International Airport,
Seattle Boeing Field)

72793024233,
99999924233,
72793524234,
99999924234

100.0% 100.0% 100.0% 100.0%

Tucumcari Municipal 
Airport, NM

72367623048,
99999923048

93.4% 93.3% 70.6% 93.3%
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APPENDIX F.  
ADDITIONAL MODELING INSIGHTS

F.1 MONTE CARLO SIMULATION CONVERGENCE BEHAVIOR

Figure F.1 and Figure F.2 show the convergence behavior of the Monte Carlo 
Simulation of the No Additions Scenario. The number of years to achieve 
reasonable convergence in an RA analysis will depend on the system under 
study and the reliability criteria. For this specific system, simulating 1,000 years 
was adequate to provide LOLE and capacity need estimates that were stable 
relative to the amount of uncertainty.57

LOLE (DAYS EVERY 10 YEARS) FIGURE F.1.

LOLE convergence for the No 
Additions Scenario using Monte 
Carlo Simulation.

PERFECT CAPACITY (GW)TO MEET  
ONE-DAY-IN-10-YEAR STANDARD

FIGURE F.2. 

Capacity need convergence for  
the No Additions Scenario using  
Monte Carlo Simulation.

While the perfect capacity needs were estimated to be 9,267 MW for 
this system, the uncertainty in the LOLE implies that the perfect capacity 

57  The error bands in both figures represent approximate 95% confidence intervals, assuming a binomial distribution for loss of load 
days.
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needs could fall between about 8,800 MW and 9,900 MW, with about 95% 
confidence. Given the size of the system and the size of the shortage, this 
amount of uncertainty seems reasonable to inform decision making. More 
precise estimates could be achieved by simulating more years, but this would 
come at a computational cost and may lead to false precision given the scale 
of uncertainty regarding the state of the system in the study year. 

F.2 WEATHER-SYNCHRONIZED SIMULATION CONVERGENCE BEHAVIOR

Figure F.3 and Figure F.4 show the convergence behavior of the Weather-
Synchronized Simulation of the No Additions Scenario. Recall that each 
iteration consists of 14 weather years and 20 hydro years and those same 280 
combinations of weather and hydro years are tested across 30 unique forced 
outage iterations via Monte Carlo Simulation. The first forced outage iteration 
in each simulation estimates forced outages using flat derates equal to the unit 
forced outage rates, while the other iterations use hourly exponential failure 
and repair models to simulate random forced outages throughout each year.

FIGURE F.3.

LOLE convergence for the 
No Additions Scenario using 
Weather-Synchronized 
Simulation.

FIGURE F.4.

Capacity need 
convergence for the No 
Additions Scenario using 
Weather-Synchronized 
Simulation.

Figure F.3 and Figure F.4 show that increasing the number of forced outage 
iterations did not have a significant impact on the LOLE or capacity need 
estimates, but did reduce the uncertainty in those estimates. Estimating 
the effects of forced outages using simple derates, rather than Monte Carlo 
modeling, yielded values that were relatively close to the converged values. 
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However, using a derate approximation resulted in much higher uncertainties 
simply because fewer conditions were tested. We have less confidence in how 
well we understand the frequency of lost load when we only test 280 possible 
years compared to 8,400 possible years.

TABLE F.1. 

Key findings using 30 forced outage iterations, compared to a forced outage derate approximation.

METRIC

30 FORCED 
OUTAGE 

ITERATIONS

FORCED 
OUTAGE DERATE 
APPROXIMATION

LOLE (Days every 10 years) 24.9 ± 0.3 24.6 ± 1.8

Perfect Capacity to meet  
LOLE = 1 day in 10 years

11,111 ± 285 MW 10,928 ± 2,866 MW

How much confidence should a planner expect to have in this type of exercise? 
It will depend on the system under study, the types of decisions that need 
to be made, and their timelines. For a system as large as the Western United 
States, precision to 100-200 MW is probably not necessary and could give 
policymakers and planners false confidence in their understanding of future 
risks. However, uncertainty in the range of several thousand MW may make it 
difficult to make decisions or weigh the prudency of plans and actions. For this 
system, about 1,000 MW of uncertainty across the Western United States may 
be reasonable and this was achieved with about five forced outage iterations 
in the Weather-Synchronized Simulation, or 1,400 simulated years. This level 
of precision was achieved a bit more quickly in the Monte Carlo Simulation, 
which required about 400-500 simulated years to estimate capacity needs to 
within 1,000 MW (see Figure F.5). For this system, the same degree of precision 
was achieved more quickly using Monte Carlo analysis, but potentially at the 
expense of accuracy and transparency.

PERFECT CAPACITY 
SHORTAGE (GW)

 Monte Carlo

  Synchronized (outage iterations)

   Synchronized (outage derates)

PERFECT CAPACITY 
SHORTAGE 
UNCERTAINTY (GW)

FIGURE F.5.

Capacity need convergence  
comparison between 
Monte Carlo and Weather-
Synchronized Simulation.
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F.3 HYDRO MODELING INSIGHTS

The level of attention given to hydro variability in RA analysis tends to depend 
on the extent to which the system relies on hydro resources. In the Pacific 
Northwest, for example, there is a tradition of testing the system under critical 
hydro conditions to ensure resource adequacy and the Northwest Power 
and Conservation Council has developed a more sophisticated approach 
that tests several decades of water years when examining regional resource 
adequacy. This study shows that hydropower plays a key role in supporting 
resource adequacy in the broader West, and so the level of rigor required to 
characterize hydropower in such studies is of interest. 

One way of simplifying the analysis with respect to hydropower is to test a 
single representative hydro year, instead of many possible hydro years. We 
conducted two tests to examine whether this approach could be used to 
achieve reasonable results with fewer iterations for the modeled system. In the 
first test, we calculated the loss of load metrics based on a single year, 2003, 
which closely aligned with average monthly hydro conditions across the West 
(based on the West-wide hydro budgets). In the second, we calculated the loss 
of load metrics based on the year 2015, which had the lowest West-wide hydro 
budgets during June-September, in which loss of load risk was highest. The 
resulting perfect capacity needs and capacity need uncertainties are shown in 
Figure F.6, compared to Weather-Synchronized Simulation that considered all 
20 hydro years.

PERFECT CAPACITY 
SHORTAGE (GW)

 Low Hydro Year

  Average Hydro Year

   All Hydro Years

PERFECT CAPACITY 
SHORTAGE 
UNCERTAINTY (GW)

FIGURE F.6.

Capacity need convergence 
comparison across 
different hydro treatments.

We found that relying on a low hydro year to estimate hydro risk for this 
system overestimated capacity needs by about 3,000 MW. Relying on a single 
relatively typical hydro year only slightly underestimated capacity needs, but 
did not yield significantly improved convergence behavior or precision relative 
to modeling 20 years of hydro conditions.
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F.4 COINCIDENCE OF WEATHER PATTERNS WITH DAYS OF THE WEEK

The Weather-Synchronized Simulation tests only days that have actually 
occurred in the historical record. Because there are so few days that 
experience weather conditions extreme enough to create potential RA risks, 
the results may meaningfully depend on whether those weather conditions 
were experienced on a weekend or weekday. For example, the most extreme 
weather conditions that were experienced during the heat wave in which 
CAISO experienced lost load in August 2020 occurred on August 16th, a 
Sunday. If those same conditions had been experienced on a weekday with the 
additional loads associated with weekday activities, the consequences could 
have been even greater. The statistical model for LOLP provides a simple way 
to test how important this risk may be for RA analysis because it allows for 
the estimation of LOLP under various combinations of weather conditions and 
weekends/weekdays that were not directly simulated. To test this, we applied 
the statistical model across the entire historical weather record twice — once 
assuming that each day was a weekday and once assuming that each day was 
a weekend day — and we calculated a weighted average of the resulting LOLPs. 

This test tended to increase the estimated LOLP on weekends, but also tended 
to decrease the estimated LOLP on weekdays, which can be seen for the 
August 2020 heat wave in Figure F.7.

LOLP DURING AUGUST 2020 HEAT WAVE

  Weekends

  Historical Days

  Weekend/Weekday Test

FIGURE F.7.

Estimated LOLP during August 2020 heat 
wave under weekday/weekend sensitivity, 
compared to estimation using historical 
calendar days.

As a result of these offsetting effects, we did not see significant differences 
between the resulting annual LOLE estimates and those that were estimated 
based on the calendars associated with the historical weather conditions (see 
Figure F.8). In this case, relying on historical calendar-based weekdays for RA 
analysis is likely sufficient.
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LOLE (DAYS EVERY 10 YEARS)

  Historical Weather

  Weekend/Weekday Test

FIGURE F.8.

Estimated historical LOLE under 
weekend/weekday sensitivity, 
compared to estimation using 
historical calendar days.

F.5 WEATHER DETRENDING

Some RA analyses attempt to address historical weather trends by detrending 
the historical weather data underpinning their models—effectively adjusting the 
weather data so that the distribution is stable across the historical record. There 
are many ways to detrend data. In the example below, we simply translated 
the weather data in each year using a linear function so that the slope of the 
detrended data over the years was equal to zero and the mean was equal 
to the mean value in 2021.58 This theoretically adjusted for historical trends, 
but did not assume that those trends would continue to the study year. We 
made this adjustment independently for each month of data to account for 
different seasonal trends. Figure F.9 shows the detrended indicator, w, when 
the slopes were calculated based on the entire historical record (over 70 years). 
Figure F.10 shows the same information, but zoomed in to focus on the most 
extreme events. The detrended data saw very high values of w more frequently 
throughout the historical record, which influenced the LOLE (Figure F.11).

w (DETRENDED WEATHER, AVERAGED  
ACROSS HYDRO YEARS)

FIGURE F.9. 

Critical weather indicator, w,  
over detrended weather record.

58  Note that the statistical analysis relies on the indicator, w, which has a linear relationship with each of the weather variables. 
Rather than transforming each weather variable individually and re-calculating w, the linearity of the transformations allowed us to 
simply transform w to capture the combined effects of transforming each weather variable. 
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w (DETRENDED WEATHER, AVERAGED 
ACROSS HYDRO YEARS)

FIGURE F.10. 

Critical weather indicator, 
w, over detrended weather 
record (focusing on extreme 
events).

  Historical Weather

  Detrended weather

FIGURE F.11. 

LOLE estimation using logistic 
regression model over detrended 
weather conditions, compared to 
historical weather conditions.

LOLE (DAYS EVERY 10 YEARS)

Figure F.11 shows the resulting LOLE when considering various historical periods 
of detrended weather. Note that for each historical period, the weather was 
detrended over the full 70+ year record, not just the years over which the LOLE 
was calculated. In this particular case, the LOLE estimates using detrended data 
were relatively stable (LOLE = 27 to 29 days every 10 years) when considering 
between 20 and 70 years of detrended weather conditions.

LOLE (DAYS EVERY 10 YEARS)

     Historical Weather

     Detrended Weather

FIGURE F.12.

LOLE estimation over various periods 
of detrended weather, compared to 
historical weather.
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While detrending offers a simple solution to adjust for past weather trends and 
achieve more stable estimates, it is important to remember that the detrended 
weather data does not represent real physical weather conditions and their 
potential frequencies in the future. As with averaging across historical weather 
conditions, without more information about future weather conditions, the 
decision to detrend a historical weather dataset for use in RA analysis is a 
policy decision based on risk tolerance. In this case, using detrended historical 
weather data provided a more conservative estimate than using historically 
observed weather conditions.
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APPENDIX G.  
STATISTICAL ANALYSIS DETAILS

This section describes a statistical analysis developed from the Weather-
Synchronized Simulation results and used to estimate the relative contributions 
of various factors to the loss of load probabilities. In addition to providing 
information about the drivers of RA risk, this analysis can also be used to 
estimate loss of load during conditions that were not directly simulated. In 
this report, we use this functionality to test historical weather conditions for 
which high resolution data was not available and feasible combinations of 
weather and day of the week that were not experienced in the historical record. 
In the future, this type of approach could also be used to explore RA risk for 
future climate scenarios. It is worth noting that the statistical analysis draws 
from the results of the Weather-Synchronized results, which are specific to a 
particular power system configuration and year. To apply the statistical analysis 
to a future power system would entail first developing a physical model 
that represents the future power system (including the load and resources) 
and then applying the Weather-Synchronized Simulation approach before a 
statistical model could be developed.   

The statistical model uses logistic regression to estimate loss of load 
probability on each day as a function of: the daily weather conditions; a 
parameter representing the variation in daylight hours across the year (to, 
for example, help the model differentiate between a hot day in June versus 
a hot day in August); a parameter differentiating between weekends (1) 
and weekdays (0); and a parameter representing the West-wide weekly 
hydro budget applied to the day (and the given hydro year) in the GridPath 
simulation. 

Because there are 64 weather variables in the historical dataset (see Appendix 
E) and the GridPath simulation yielded only 105 unique weather days with 
lost load (in at least one iteration of at least one hydro year), care had to be 
taken to avoid overfitting with respect to weather. In this following section, 
we describe how we examined the effects of weather variables in order to 
significantly reduce the number of variables representing weather in the model.

G.1 IDENTIFYING KEY WEATHER DRIVERS

To isolate the impacts of weather, we first conducted a statistical analysis 
on the synchronized case with extreme forced outage conditions. Using an 
extreme forced outage case provided more days with lost load for the model 
to consider and avoided noise associated with random forced outages. The 
forced outage case resulted in lost load (in at least one of the 20 hydro years) 
in only 202 unique weather days across the simulation. To determine the key 
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weather drivers of RA risk, we fit a logistic regression model to estimate the 
LOLP as a function of weather and non-weather parameters:

LOLPij = 1/(1 - e-wij) 

wij = aXi  + bYi + czij + d

where Xi contains weather information for day i, Yi contains the information 
for the day that does not depend on the weather or hydro conditions (daylight 
hours and weekend versus weekday), and zij contains the hydro conditions for 
the day on hydro year j. To reduce the dimensionality of the weather dataset 
and to help prevent overfitting, we used only the temperature and wind speed 
weather variable across the West.59 

To avoid overfitting, we trained the model on approximately 80% of the data, 
taking care to ensure that about 80% of the unique weather days with lost load 
in one or more hydro years were in the training set so that weather conditions 
leading to lost load in the training and testing sets were materially different. 
We tested performance across 30 randomly generated training and testing sets 
to select a regularization parameter (C = 5). Performance was measured by the 
sensitivity and precision of the estimated day classifications as well as the root-
mean-square error of the estimated LOLP in each simulated year. 

After selecting the regularization parameter, we applied Bootstrap Aggregation 
across 100 randomly-generated training datasets. Figure G.1 compares the 
estimated LOLE using this approach to the LOLE based on the GridPath 
simulation of the synchronized extreme derate case. The left panel shows each 
day in terms of the vector w (averaged across the hydro years) and the right 
panel compares the average LOLE for each simulated year.

FIGURE G.1.

Logistic regression estimates for the No Additions Scenario under extreme forced outage assumption.

  Estimated– 
Logistic 
Regression

  Simulated in 
GridPath

59  We separately tested a model that used principal component analysis across all of the weather variables to reduce the 
dimensionality and found a very small difference in model performance.
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To determine the weather coefficients for the LOLP estimation, we examined 
a, the vector of weather coefficients in each of the 100 logistic regression fits. 
Each set of coefficients were slightly different because they were trained on 
different randomly-generated subsets of the data. We took the average across 
the 100 iterations to derive a single vector representing the contribution of 
each normalized weather variable to the likelihood of lost load. These are 
shown in Figure G.2.

DAILY AND WEEKLY AVERAGE 
WEATHER COEFFICIENTS

FIGURE G.2.

Weather coefficients in the 
logistic regression for the 
No Additions Scenario.

The analysis confirmed that temperature was a key indicator of loss of load 
risk in the Weather-Synchronized Simulation under the extreme derate 
assumption. Wind speed appeared to be less important, although high wind 
speeds in Wyoming and Montana did seem to correlate with lower loss of load 
probabilities.

G.2 TRAINING THE MODEL ON SIMULATED DAYS

We used a similar logistic regression approach to fit a model to the full 
set of simulated days across the forced outage iterations in the Weather-
Synchronized Simulation. Because forced outages were less extreme in this 
case than the case described in the previous section, there were even fewer 
unique weather days with lost load — only 105 unique weather days between 

ADVANCING RESOURCE ADEQUACY ANALYSIS WITH THE GRIDPATH RA TOOLKIT   |  150



2007 and 2020. To avoid overfitting, we used the coefficients derived in the 
prior section to reduce the daily weather conditions down to a single variable 
that represented how extreme the weather was on each day.

In addition to the daily weather variable, we also included a weekly weather 
variable equal to the average of the daily weather variables across the week 
in which each day was optimized in the dispatch simulation. This helped to 
account for GridPath’s ability to trade off unserved energy between days 
within the same week and to account for limitations that may exacerbate RA 
challenges on a given day if it is surrounded by other challenging days (e.g., 
energy constraints). We then fit a logistic regression model to estimate the 
loss of load probability for each day based on the two weather parameters as 
well as the non-weather parameters listed in Section G.1 (each normalized to 
have mean 0 and standard deviation 1). The formulation was identical to the 
model described in the prior section, except that X contained only the daily 
and weekly weather variables rather than the 32 temperature and wind speed 
variables. We used the same approach to select the regularization parameter 
(C=0.1), and also applied Bootstrap Aggregation across 100 randomly-
generated training datasets to arrive at the final estimates. Figure G.3 shows 
the resulting logistic regression coefficients.

FIGURE G.3.

Logistic regression coefficients  
for the No Additions Scenario.

Figure G.3 compares the estimated LOLE using this approach to the LOLE 
based on the GridPath simulation of the No Additions Scenario under the 
synchronized weather approach. The left panel shows each day in terms of the 
vector w (averaged across the hydro years) and the right panel compares the 
average LOLE for each simulated year.
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  Estimated– 
Logistic 
Regression

  Simulated in 
GridPath

FIGURE G.4.

Logistic regression 
estimates for the  
No Additions 
Scenario

Note that the statistical analysis employed in this study was greatly simplified 
because all lost load was observed on hot summer days. Because this weather 
mode dominated the risk of lost load, we could estimate the classes (days with 
lost load versus days without lost load) as linearly separable and apply a linear 
classifier (i.e., logistic regression). If very different weather modes, for example 
cold snaps or more moderate temperature low wind days, resulted in lost load 
in the Weather-Synchronized Simulation, then the methodology described 
above could potentially be applied after an initial clustering step, or a more 
sophisticated neural network modeling approach could be applied. Generally, 
when using more sophisticated models, even more care must be taken to avoid 
overfitting.
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